Easy-TF-Log 项目使用教程
1. 项目的目录结构及介绍
easy-tf-log/
├── demo.py
├── easy_tf_log.py
├── LICENSE
├── Makefile
├── README.md
├── setup.py
├── tensorboard_screenshot.png
└── tests.py
demo.py
: 一个完整的示例文件,展示了如何使用easy_tf_log
记录变量。easy_tf_log.py
: 核心模块文件,包含了easy_tf_log
的主要功能实现。LICENSE
: 项目的开源许可证文件,采用 MIT 许可证。Makefile
: 用于构建和测试项目的 Makefile 文件。README.md
: 项目的说明文档,介绍了项目的基本信息和使用方法。setup.py
: 用于安装项目的 Python 脚本。tensorboard_screenshot.png
: TensorBoard 截图,展示了日志记录的效果。tests.py
: 测试文件,用于测试easy_tf_log
的功能。
2. 项目的启动文件介绍
项目的启动文件是 demo.py
,它展示了如何使用 easy_tf_log
记录变量。以下是 demo.py
的简要介绍:
from easy_tf_log import tflog
# 记录变量
for i in range(10):
tflog('really_interesting_variable_name', i)
运行 demo.py
后,你会在当前工作目录下找到一个 logs
目录,该目录包含了记录的变量数据,可以通过 TensorBoard 查看。
3. 项目的配置文件介绍
项目没有专门的配置文件,但可以通过 easy_tf_log
模块中的函数进行配置。以下是一些常用的配置方法:
全局日志记录器
from easy_tf_log import tflog, set_dir, set_writer
# 设置日志目录
set_dir('custom_logs')
# 设置日志写入器
writer = tf.summary.FileWriter('custom_logs')
set_writer(writer)
# 记录变量
for i in range(10):
tflog('really_interesting_variable_name', i)
实例化的日志记录器对象
from easy_tf_log import Logger
# 创建 Logger 对象
logger = Logger(log_dir='custom_logs')
# 记录变量
for i in range(10):
logger.log_key_value('really_interesting_variable_name', i)
通过这些配置方法,你可以灵活地设置日志记录的目录和写入器,以满足不同的需求。