VPoser:基于变分的人体姿态先验教程
human_body_prior 项目地址: https://gitcode.com/gh_mirrors/hu/human_body_prior
项目介绍
VPoser 是一个学习型变分人体姿态先验模型,旨在解决复杂而高维度的人体3D关节位置预测问题。此项目利用大规模的SMPL(Skinned Multi-Person Linear)人体模型数据训练而成,提供了端到端可微分的解决方案,不仅能够有效建模人体关节间的相关性,还引入了高效、低维的人体姿态表示方法,适合于数据依赖任务中生成有效的3D人体姿势。VPoser主要应用于例如SMPLify-X中的身体模型拟合过程,作为逆向动力学(Inverse Kinematics, IK)求解器。
项目快速启动
环境要求
- Python 3.7
- PyTorch 1.7.1
安装与配置
首先,克隆仓库到本地:
git clone https://github.com/nghorbani/human_body_prior.git
然后,在项目根目录执行以下命令安装依赖:
pip install -r requirements.txt
python setup.py develop
快速示例
为了快速体验VPoser,你可以运行一个简单的脚本来生成新的人体姿势样本:
import torch
from human_body_prior.body_model.body_model import BodyModel
from human_body_prior.tools import viz_tools
from human_body_prior.poser.bm_pose import VPoser
# 初始化VPoser
vp = VPoser(body_model_path='path/to/body_model')
# 生成随机潜变量
latent_pose = torch.randn(1, vp.latdim)
# 解码得到人体姿势参数
body_pose = vp.decode(latent_pose)
# 使用BodyModel将姿势参数转换为三维骨架
bm = BodyModel(bm_path='path/to/body_model')
vertices, joints = bm(body_pose=body_pose)
# 可视化结果
viz_tools.plot_smpl(joints)
请注意,上述路径'path/to/body_model'
应替换为你实际存放模型权重的路径。
应用案例与最佳实践
VPoser可用于多种场景,如动态人体动作合成、人体姿态估计的后处理、以及增强现实中的虚拟角色控制。最佳实践中,开发者应结合其不同任务的需求,灵活运用VPoser的逆向动力学能力,通过定义关键点来实现复杂的身体运动模拟。确保在调整身体模型参数时,充分利用VPoser对不可能姿态的有效抑制特性,保证生成姿势的真实性与自然性。
典型生态项目
VPoser是更广泛研究和应用生态系统的一部分,特别是在3D人体建模与动画领域。它与SMPL家族模型紧密集成,如SMPLify-X,这些工具和模型共同促进了学术界和工业界对人体捕获与重建技术的进步。开发者和研究人员可以通过结合VPoser与其他人体建模工具,探索从人体姿态估计到交互式数字内容创建的广泛应用。
本教程提供了一个基础框架以引导您开始使用VPoser,并鼓励您深入探索该项目文档和示例,解锁更多高级特性和创新应用。
human_body_prior 项目地址: https://gitcode.com/gh_mirrors/hu/human_body_prior