推荐项目:Pansori - 自动语音识别(ASR)语料库构建神器
项目简介
Pansori是一个用于从在线视频中自动创建语音识别(ASR)语料库的程序。它能处理音频和字幕数据,利用这些信息为各类语言的学习和开发提供宝贵的资源。该项目设计精巧,由四个阶段组成:摄入、对齐、转换和验证。
技术剖析
摄入阶段
Pansori能从网络视频中下载不同分辨率的视频流和音频流,以mp4和srt文件格式存储,同时如果有的话,还会获取手写的字幕信息。
对齐阶段
通过字幕的时间信息,可以将音频流分割,形成与文本片段匹配的对。对于可能出现的不准确对齐,如因场景变化或快速讲话时音节切割不当引起的错误,Pansori采用了finetuneas工具进行调整。未来计划采用完全自动化的方法进一步简化这个过程。
转换阶段
在这一阶段,经过对齐的音频和字幕数据会被处理,音频流进行无损压缩,而字幕数据则进行标准化、标点去除和非语音文本移除。
验证阶段
为了提高语料库质量,会通过过滤不准确的音频和字幕对来进行校验。Pansori创新性地利用Google Cloud Speech-to-Text API进行云服务验证,支持超过120种语言,极大地简化了开发流程。
应用场景
无论是在自然语言处理研究、语言学习还是在开发各种语言的ASR系统中,Pansori都是一个强大的工具。它可以处理任何使用Google API支持的语言的字幕视频,适用于全球范围内的多元语言环境。
项目特点
- 自动化流程:从视频摄入到语料库建立,Pansori实现了大部分过程的自动化。
- 兼容性广:支持多种视频平台的视频,以及Google Cloud支持的120多种语言。
- 质量保证:通过云服务进行验证,确保了高质量的ASR语料库。
- 易扩展:允许用户根据需求修改和定制,适应不同的应用场景。
安装与使用
只需简单几步即可开始使用Pansori:
- 克隆仓库:
git clone https://github.com/yc9701/pansori
- 安装依赖库:包括
pytube
,pysubs2
(Python 3.6环境下),以及可选的pydub
(用于音频播放验证)。 - 设置Google Cloud Speech API(需要拥有账户)。
现在,你可以开始探索并利用Pansori来创建你自己的ASR语料库,推动你的项目或者研究进入新境界!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考