基于知识图谱嵌入的推荐系统
去发现同类优质开源项目:https://gitcode.com/
项目介绍
该项目是一个创新性的推荐系统,它利用知识图谱嵌入技术来提升商品推荐的准确性和个性化程度。开发者完全自主编写了核心代码,并对TransE和Rescal这两种流行的知识图谱表示学习方法进行了复现。通过模拟数据生成工具和详细的文件结构设计,这个开源项目为真实场景的数据输入提供了参考模板。
项目技术分析
项目主要由以下几个部分构成:
- generate_data.py: 生成模拟数据,以供测试和理解系统运行机制。
- data: 包含实体和关系文件,以及训练、验证和测试数据集。
- dataset.py: 处理模型训练中的数据,将原始数据转化为模型可用的形式。
- model.py: 实现了TransE和Rescal两种知识图谱嵌入方法。
- main.py: 主函数,控制模型训练,可以通过调整参数在TransE和Rescal之间切换。
- run.py: 运行模型的脚本,支持5折交叉验证和不同评分策略。
- use.py: 对所有样本进行训练后,对负样本打分排序,以找出高匹配度的推荐项。
- run.sh: 在Linux环境下运行项目的bash脚本。
开发者在项目中提供了清晰的代码注解,使研究者和开发者能够轻松理解和应用这些技术。
项目及技术应用场景
这款推荐系统适用于电商平台,通过对用户购买历史、浏览行为和其他相关信息构建知识图谱,为每个用户提供更精准的商品推荐。知识图谱嵌入技术帮助捕捉复杂的实体关系,提高推荐的准确性和多样性。此外,这种方法同样适用于社交媒体平台的个性化内容推荐或新闻推荐系统。
项目特点
- 自定义性强:允许用户根据实际需求调整数据格式,并且支持两种不同的知识图谱嵌入算法。
- 可扩展性:框架设计灵活,方便添加新的知识图谱嵌入模型或其他推荐算法。
- 易于复现和理解:详细文档和代码注解有助于快速上手,便于进一步的研究和开发。
- 性能验证:通过5折交叉验证和不同评分策略评估模型性能,确保推荐效果的可靠性。
如果你正在寻找一个能够提供深度个性化推荐的解决方案,或者想深入了解知识图谱嵌入技术在推荐系统中的应用,这个开源项目无疑是一个值得尝试的选择。只需按照提供的指南和示例,就能轻松地将其集成到自己的系统中,提升用户体验。赶紧行动起来,探索这个强大而灵活的推荐引擎吧!
去发现同类优质开源项目:https://gitcode.com/