RealTime-Gesture-Recognition-using-Mediapipe 项目教程
1. 项目的目录结构及介绍
RealTime-Gesture-Recognition-using-Mediapipe/
├── __pycache__/
├── env/
├── .gitignore
├── 725efe81-3c4f-44df-a841-e0d428b3b026_M3xVMf17.mp4
├── LICENSE
├── README.md
├── audio_controls.py
├── baseline_model_task
├── custom_model_1_task
├── custom_model_2_task
├── finetuning_handrecognition_model.ipynb
├── gesture_recognizer.py
├── hands_landmark.py
├── install.sh
└── requirements.txt
目录结构介绍
- pycache/: Python 缓存文件目录。
- env/: 可能是虚拟环境目录,用于隔离项目依赖。
- .gitignore: Git 忽略文件,指定哪些文件或目录不需要被 Git 跟踪。
- 725efe81-3c4f-44df-a841-e0d428b3b026_M3xVMf17.mp4: 示例视频文件。
- LICENSE: 项目许可证文件,采用 Apache-2.0 许可证。
- README.md: 项目说明文件,包含项目的基本介绍和使用说明。
- audio_controls.py: 控制计算机音频功能的代码文件。
- baseline_model_task: 基线模型的任务文件。
- custom_model_1_task: 自定义模型1的任务文件。
- custom_model_2_task: 自定义模型2的任务文件。
- finetuning_handrecognition_model.ipynb: 微调手部识别模型的 Jupyter Notebook 文件。
- gesture_recognizer.py: 手势识别的主要代码文件,用于实时手势识别。
- hands_landmark.py: 使用 Mediapipe 手部关键点识别手势的实验代码片段。
- install.sh: 安装脚本文件,用于安装项目依赖。
- requirements.txt: 项目依赖文件,列出了项目所需的所有 Python 包。
2. 项目的启动文件介绍
gesture_recognizer.py
这是项目的主要启动文件,用于实时手势识别。通过运行该文件,可以使用摄像头实时捕捉手势并进行识别。
使用方法
在终端中运行以下命令启动应用程序:
python gesture_recognizer.py
运行后,应用程序将打开摄像头并开始实时手势识别。按下 ESC
键可以关闭应用程序。
3. 项目的配置文件介绍
requirements.txt
该文件列出了项目运行所需的所有 Python 包及其版本。通过运行以下命令可以安装所有依赖:
pip install -r requirements.txt
install.sh
这是一个安装脚本文件,用于自动化安装项目依赖。可以通过运行以下命令执行安装脚本:
./install.sh
finetuning_handrecognition_model.ipynb
这是一个 Jupyter Notebook 文件,用于微调手部识别模型。通过运行该 Notebook,可以训练和微调手势识别模型,并将其保存以供后续使用。
README.md
项目的说明文件,包含了项目的基本介绍、安装步骤、使用方法等信息。建议在开始使用项目之前仔细阅读该文件。