分层神经图谱项目教程
layered-neural-atlases项目地址:https://gitcode.com/gh_mirrors/la/layered-neural-atlases
项目介绍
分层神经图谱(Layered Neural Atlases)是一个用于视频编辑的开源项目,由Yoni Kasten等人开发。该项目通过将视频分解为一组分层的2D图谱,每个图谱提供视频中对象(或背景)外观的统一表示。这种方法允许在图谱域中进行直观和易于编辑的操作,从而实现视频的一致性编辑。
项目快速启动
环境设置
首先,确保你已经安装了Python 3.7和PyTorch 1.6。你可以通过以下命令创建一个名为neural_atlases
的conda环境,并安装所需的依赖项:
conda create --name neural_atlases python=3.7
conda activate neural_atlases
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 matplotlib tensorboard scipy scikit-image tqdm opencv -c pytorch
pip install imageio-ffmpeg gdown
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.6/index.html
下载预训练模型
下载预训练模型并设置相关路径:
mkdir -p pretrained_models/checkpoints/libby
wget -O pretrained_models/checkpoints/libby/model.pth https://path_to_pretrained_model.pth
运行示例
使用以下命令运行示例视频编辑:
python run_editing.py --trained_model_folder=pretrained_models/checkpoints/libby --video_name=libby --data_folder=data --output_folder=editing_outputs --use_edit_frame --edit_frame_index=7 --edit_frame_path=pretrained_models/edit_inputs/libby/edit_frame.png
应用案例和最佳实践
视频分解
项目的主要应用之一是视频分解,将视频分解为前景和背景图谱,这些图谱可以用于后续的编辑操作。
图谱编辑
通过编辑单个2D图谱图像,可以自动将编辑应用到所有视频帧中,实现一致的视频编辑效果。
示例编辑
以下是一个示例编辑命令,展示了如何编辑图谱并应用到视频中:
python run_editing.py --trained_model_folder=pretrained_models/checkpoints/libby --video_name=libby --data_folder=data --output_folder=editing_outputs --use_edit_frame --edit_frame_index=7 --edit_frame_path=pretrained_models/edit_inputs/libby/edit_frame.png
典型生态项目
Detectron2
Detectron2是Facebook AI Research的一个目标检测库,用于视频中的对象识别和分割,是本项目的重要依赖之一。
PyTorch
PyTorch是一个广泛使用的深度学习框架,提供了强大的GPU加速支持,是本项目的主要开发和运行环境。
通过以上步骤,你可以快速启动并使用分层神经图谱项目进行视频编辑。希望这个教程对你有所帮助!
layered-neural-atlases项目地址:https://gitcode.com/gh_mirrors/la/layered-neural-atlases