分层神经图谱项目教程

分层神经图谱项目教程

layered-neural-atlases项目地址:https://gitcode.com/gh_mirrors/la/layered-neural-atlases

项目介绍

分层神经图谱(Layered Neural Atlases)是一个用于视频编辑的开源项目,由Yoni Kasten等人开发。该项目通过将视频分解为一组分层的2D图谱,每个图谱提供视频中对象(或背景)外观的统一表示。这种方法允许在图谱域中进行直观和易于编辑的操作,从而实现视频的一致性编辑。

项目快速启动

环境设置

首先,确保你已经安装了Python 3.7和PyTorch 1.6。你可以通过以下命令创建一个名为neural_atlases的conda环境,并安装所需的依赖项:

conda create --name neural_atlases python=3.7
conda activate neural_atlases
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 matplotlib tensorboard scipy scikit-image tqdm opencv -c pytorch
pip install imageio-ffmpeg gdown
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.6/index.html

下载预训练模型

下载预训练模型并设置相关路径:

mkdir -p pretrained_models/checkpoints/libby
wget -O pretrained_models/checkpoints/libby/model.pth https://path_to_pretrained_model.pth

运行示例

使用以下命令运行示例视频编辑:

python run_editing.py --trained_model_folder=pretrained_models/checkpoints/libby --video_name=libby --data_folder=data --output_folder=editing_outputs --use_edit_frame --edit_frame_index=7 --edit_frame_path=pretrained_models/edit_inputs/libby/edit_frame.png

应用案例和最佳实践

视频分解

项目的主要应用之一是视频分解,将视频分解为前景和背景图谱,这些图谱可以用于后续的编辑操作。

图谱编辑

通过编辑单个2D图谱图像,可以自动将编辑应用到所有视频帧中,实现一致的视频编辑效果。

示例编辑

以下是一个示例编辑命令,展示了如何编辑图谱并应用到视频中:

python run_editing.py --trained_model_folder=pretrained_models/checkpoints/libby --video_name=libby --data_folder=data --output_folder=editing_outputs --use_edit_frame --edit_frame_index=7 --edit_frame_path=pretrained_models/edit_inputs/libby/edit_frame.png

典型生态项目

Detectron2

Detectron2是Facebook AI Research的一个目标检测库,用于视频中的对象识别和分割,是本项目的重要依赖之一。

PyTorch

PyTorch是一个广泛使用的深度学习框架,提供了强大的GPU加速支持,是本项目的主要开发和运行环境。

通过以上步骤,你可以快速启动并使用分层神经图谱项目进行视频编辑。希望这个教程对你有所帮助!

layered-neural-atlases项目地址:https://gitcode.com/gh_mirrors/la/layered-neural-atlases

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎情卉Desired

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值