推荐项目:FM_FTRL - 高效的CTR预测开源库

推荐项目:FM_FTRL - 高效的CTR预测开源库

FM_FTRLHashed Factorization Machine with Follow The Regularized Leader for Kaggle Avazu Click-Through Rate Competition项目地址:https://gitcode.com/gh_mirrors/fm/FM_FTRL

1、项目介绍

在大数据时代,点击率预测(CTR)是广告推荐系统中的核心任务之一。FM_FTRL 是一个专为 Kaggle Avazu CTR 竞赛设计的开源项目,它采用在线学习方法和特征哈希技术,以极小的内存占用实现高效的模型训练。该项目基于 Tinrtgu 的代码,并在原有基础上进行了优化,引入了 FTRL 优化算法和因子分解机(Factorization Machine),使其在处理大规模数据集时表现出色。

2、项目技术分析

- 在线学习

FM_FTRL 实现了在线学习,意味着它可以在接收新数据的同时进行模型更新,无需一次性加载全部数据,这大大降低了对内存的需求。

- 特征哈希

通过特征哈希技术,FM_FTRL 将高维稀疏特征映射到低维空间,有效减少了存储需求,同时也加速了计算过程。

- Follow The Regularized Leader (FTRL) 优化

FTRL 是 Google 研究人员提出的一种优化策略,它结合了 L1 和 L2 正则化,既能防止过拟合,也能保持模型的稀疏性。

- 因子分解机

FM_FTRL 包含了一个因子分解机组件,它可以学习潜在的低秩表示,从而捕捉特征之间的非线性关系。

- L1/L2 & Dropout 正则化

项目支持 L1 和 L2 正则化,用于控制模型复杂度并避免过拟合。此外,还提供了 Dropout 正则化的选项,进一步增强模型的泛化能力。

3、项目及技术应用场景

FM_FTRL 可广泛应用于广告推荐、新闻推送、电商产品推荐等场景中,通过预测用户可能的点击行为,提高用户体验,提升业务效果。对于需要处理海量特征和样本的数据挖掘竞赛或实际项目来说,这是一个非常有价值的工具。

4、项目特点

  • 高效:支持 Pypy 运行,提供显著的性能提升。
  • 轻量级:通过特征哈希降低内存占用,适合大规模数据处理。
  • 灵活:可配置正则化参数和 Dropout 参数,适应不同应用场景。
  • 易于使用:提供运行示例脚本 runmodel_example.py,方便快速上手。

总的来说,FM_FTRL 是一个强大的、适用于CTR预测的开源工具,无论是学术研究还是商业应用,都值得您尝试。立即加入这个项目,让您的数据预测能力更上一层楼!

FM_FTRLHashed Factorization Machine with Follow The Regularized Leader for Kaggle Avazu Click-Through Rate Competition项目地址:https://gitcode.com/gh_mirrors/fm/FM_FTRL

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋韵庚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值