深度强化学习中的马尔可夫决策过程(MDP)解析

深度强化学习中的马尔可夫决策过程(MDP)解析

d2l-en d2l-ai/d2l-en: 是一个基于 Python 的深度学习教程,它使用了 SQLite 数据库存储数据。适合用于学习深度学习,特别是对于需要使用 Python 和 SQLite 数据库的场景。特点是深度学习教程、Python、SQLite 数据库。 d2l-en 项目地址: https://gitcode.com/gh_mirrors/d2/d2l-en

引言

在深度强化学习领域,马尔可夫决策过程(Markov Decision Process, MDP)是建模智能体与环境交互的核心数学框架。本文将深入解析MDP的各个组成部分,并通过直观的例子帮助读者理解这一重要概念。

什么是马尔可夫决策过程?

马尔可夫决策过程是描述决策问题的数学框架,它由四个关键要素组成:

  1. 状态空间(𝒮):系统可能处于的所有状态的集合。例如在网格世界导航问题中,每个网格位置就是一个状态。

  2. 动作空间(𝒜):智能体在每个状态下可以执行的动作集合。如"前进"、"左转"、"右转"等。

  3. 转移函数(T):描述执行动作后状态转移的概率分布。数学表示为T(s,a,s')=P(s'|s,a),表示在状态s执行动作a后转移到状态s'的概率。

  4. 奖励函数(r):智能体在特定状态下执行动作后获得的即时奖励。奖励函数的设计直接影响智能体的学习目标。

MDP的直观示例

考虑一个机器人在网格世界中导航的任务(如图1所示):

  • 绿色房子代表目标位置
  • 红色十字代表危险区域
  • 空白格子是普通区域

网格世界导航任务示意图

在这个例子中:

  • 状态空间𝒮是机器人可能位于的所有网格位置
  • 动作空间𝒜包括基本移动指令
  • 转移函数T考虑了机器人执行动作时可能出现的误差
  • 奖励函数r可以设计为:到达目标获得高奖励,进入危险区域获得负奖励,其他移动获得小惩罚

回报与折扣因子

在强化学习中,我们关心的是长期累积回报而非即时奖励。轨迹τ的回报定义为:

R(τ) = r₀ + γr₁ + γ²r₂ + ...

其中γ∈[0,1)是折扣因子,它:

  • 使无限时间步的回报总和保持有限
  • 控制智能体对远期奖励的重视程度
  • γ接近0:智能体变得短视
  • γ接近1:智能体更重视长期收益

马尔可夫性质的重要性

马尔可夫性质要求下一状态s_{t+1}只依赖于当前状态s_t和动作a_t,而与历史状态和动作无关。这一性质看似限制性强,但实际上通过适当的状态表示,许多实际问题都能转化为马尔可夫决策过程。

例如,如果机器人状态不仅包含位置还包括速度,那么即使物理定律依赖于加速度和速度,系统仍满足马尔可夫性质。

MDP的数学表示

完整的马尔可夫决策过程可以表示为四元组: MDP = (𝒮, 𝒜, T, r)

其中:

  • 𝒮:状态空间
  • 𝒜:动作空间
  • T:转移概率函数
  • r:奖励函数

实际应用思考

  1. 山地车问题的MDP建模:

    • 状态:车的位置和速度
    • 动作:油门大小和方向
    • 奖励:到达山顶获得高奖励,耗能获得小惩罚
  2. Pong游戏的MDP建模:

    • 状态:球拍位置、球的位置和速度
    • 动作:球拍上下移动
    • 奖励:得分获得正奖励,失分获得负奖励

总结

马尔可夫决策过程为强化学习提供了坚实的理论基础。理解MDP的各个组成部分及其相互关系,是设计有效强化学习算法的关键。通过适当的状态表示和奖励设计,我们可以将许多现实问题转化为MDP问题,进而应用各种强化学习算法求解。

d2l-en d2l-ai/d2l-en: 是一个基于 Python 的深度学习教程,它使用了 SQLite 数据库存储数据。适合用于学习深度学习,特别是对于需要使用 Python 和 SQLite 数据库的场景。特点是深度学习教程、Python、SQLite 数据库。 d2l-en 项目地址: https://gitcode.com/gh_mirrors/d2/d2l-en

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

庞锦宇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值