马尔可夫决策过程 (1)

4.1简介

马尔可夫决策过程(Markov decision process, MDP)是强化学习的重要概念。前面两章所讲的环境其实就是一个马尔可夫决策过程。我们之前讲到的老虎机问题不算一个MDP问题,是因为MDP还包括状态信息以及状态信息之间的转移。MDP是强化学习问题在数学上的理想化形式,他其实就是一种通过交互式学习来实现目标的理论框架。这个框架我们可以理解成在写作文时,都需要有开头、主要内容、结尾一样。如果我们准备用强化学习去解决一个问题,第一个关键步骤就是要将实际问题抽象为一个MDP(PS:为了图方便,所有的马尔可夫决策过程后续我都写成MDP了),也就是明确马尔可夫决策过程的各个组成要素。

为了更好地理解MDP,所以我们将会从马尔科夫过程(不是马尔可夫决策过程)进行,逐渐深入,引出MDP。

4.2马尔可夫过程

4.2.1 随机过程

为什么要提一下随机过程呢,因为马尔可夫过程是一种特定类型的随机过程。随机过程的研究对象是随时间演变的随机现象(例如天气随时间变化、大陆漂移等等)。在随机过程里面,随机现象在某时刻t的取值是一个向量随机变量,用S_t表示。刚才提到的天气变化等随机现象就hi状态的变化过程。随机过程中当前时刻的状态S_t一般取决于之前所有时刻的状态\{S_1,S_2,...S_{t-1}\}.我们已知历史状态信息(S_1,S_2,...,S_t)时,下一个时刻状态为S_{t+1}的概率表示成P(S_{t+1} | S_1,...,S_t).这句话也很好理解,医生在观察住院病人情况时,不能只根据病人昨天的状态判断今天状态,而是要根据住院以来或者近一段时间情况分析。

4.2.2 马尔可夫性质

当且仅且某时刻的状态只取决于上一个时刻的状态时,一个随机过程被称为马尔可夫性质,用公式来表示即为P(S_{t+1}|S_t) = P(S_{t+1}|S_1,S_2,...S_t).也就是讲,下一时刻状态只取决于当前状态,而不会受到过去状态的影响。但是强调一下:具有马尔可夫性质的随机过程就和历史状态无关了。虽然t+1的状态只与t时刻状态相关,但t时刻状态是与其实包含了t-1时刻的状态信息,以此类推。通过链式传递的关系,历史的信息被传递到t+1时刻。马尔可夫性质大大简化了运算,因为只要当前的状态可知,历史信息都可以不用知道,利用当前信息就可以决定未来。

4.2.3 马尔可夫过程

具有马尔可夫性质的随机过程被称为马尔可夫过程,也被称为马尔科夫链。通常用元组<S,P>描述一个马尔可夫过程,其中S是有限数量的状态集合,P是状态转移矩阵。P指的是从一个状态到另一个状态的概率。假设一共有n个状态,此时S = \{s_1,s_2,...,s_n\},状态转移矩阵P定义了所有状态对之间的转移概率,即

\mathbb{P} = \begin{bmatrix} P(s_1|s_1) & \cdots & P(s_n|s_1) \\ \vdots & \ddots & \vdots \\ P(s_1|s_n) & \cdots & P(s_n|s_n) \end{bmatrix}

矩阵P中第i行和第j列元素P(s_j|s_i)= P(S_{t+1}=s_j | S_t = s_i)表示从状态s_i转移到s_j的概率,我们称P(s'|s)为状态转移函数。从某个状态出发,到达其他状态的概率和必须为1,即状态转移矩阵P的每一行的和为1.

上图是一个具有6个状态\{s_1,s_2,s_3,s_4,s_5,s_6\},绿色圆圈表示一个状态,每个状态都有一定概率(包括概率0)转移到其他状态,其中s_6被称为终止状态,因为他不会在转移到其它状态,可以理解为永远以概率1转移到自己,状态之间的虚线箭头表示状态的转移,箭头旁的数字表示该状态转移发生的概率。从每个状态出发转移到其它概率总和为1.例如,s_1有90%的概率保持不变,有10%的概率转移到s_2s_6就是100%到自己。

可以写出这个状态转移图的马尔可夫过程的状态转移矩阵:

\mathbb{P} = \begin{bmatrix} 0.9 & 0.1 & 0 & 0 & 0 & 0\\ 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.6 & 0.4 \\ 0 & 0 & 0 & 0 & 0.3 & 0.7 \\ 0 & 0.2 & 0.3 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix}

其中第ij列的值P_{i,j}则代表从状态s_i转移到s_j的概率。

给定一个马尔可夫过程,我们就可以从某个状态出发,根据他的状态转移矩阵生成一个状态序列,这个步骤也被叫做采样。例如,从s_1出发,可以生成序列s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_6或者序列s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \rightarrow s_5 \rightarrow s_3 \rightarrow s_6等。生成这些序列的概率和状态转移矩阵有关。

4.3马尔可夫奖励过程

在马尔科夫过程的基础上加入奖励函数r和折扣因子\gamma,就可以得到一个马尔可夫奖励过程(Markov reward process)。一个马尔可夫奖励过程由<S,P,r, \gamma>构成,各个元素含义如下所示:

  1. S 是有限状态的集合。
  2. P是状态转移矩阵。
  3. r是奖励函数,某个状态s的奖励r(s)指转移到该状态时可以获得奖励的期望。
  4. \gamma是折扣因子(discount factor),取值范围为[0,1)。引入折扣因子的理由为远期利益具有一定不确定性,有时我们更希望能够尽快获得一些奖励,所以我们需要对远期利益打一些折扣。接近 1 的\gamma更关注长期的累计奖励,接近 0 的\gamma更考虑短期奖励.

4.3.1 回报

在一个马尔可夫奖励过程中,从第t时刻状态S_t开始,直到终止状态时,所有奖励的衰减之和称为回报G_t(Return),公式如下:

G_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots = \sum_{k=0}^{\infty} \gamma^k R_{t+k}

其中,R_t表示在时刻获得的奖励。在下图中,我们继续沿用马尔可夫过程的例子,并在其基础上添加奖励函数,构建成一个马尔可夫奖励过程。例如,进入状态s_2可以得到奖励-2,表明我们不希望进入s_2,进入s_4可以获得最高的奖励10,但是进入s_6之后奖励为零,并且此时序列也终止了。

比如选取s_1为起始状态,设置\gamma = 0.5,采样到一条状态序列为s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_6,就可以计算s_1的回报G_1,得到G_t = -1 +0.5*(-2) + 0.5^2 *-2 = -2.5

接下来我们用代码表示图中的马尔可夫奖励过程,并且定义计算回报的函数。

import numpy as np
np.random.seed(0)
# 定义状态转移概率矩阵P
P = [
    [0.9, 0.1, 0.0, 0.0, 0.0, 0.0],
    [0.5, 0.0, 0.5, 0.0, 0.0, 0.0],
    [0.0, 0.0, 0.0, 0.6, 0.0, 0.4],
    [0.0, 0.0, 0.0, 0.0, 0.3, 0.7],
    [0.0, 0.2, 0.3, 0.5, 0.0, 0.0],
    [0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
]
P = np.array(P)

rewards = [-1, -2, -2, 10, 1, 0]  # 定义奖励函数
gamma = 0.5  # 定义折扣因子


# 给定一条序列,计算从某个索引(起始状态)开始到序列最后(终止状态)得到的回报
def compute_return(start_index, chain, gamma):
    G = 0
    for i in reversed(range(start_index, len(chain))):
        G = gamma * G + rewards[chain[i] - 1]
    return G


# 一个状态序列,s1-s2-s3-s6
chain = [1, 2, 3, 6]
start_index = 0
G = compute_return(start_index, chain, gamma)
print("根据本序列计算得到回报为:%s。" % G)

根据本序列计算得到回报为:-2.5。

4.3.2 价值函数

在马尔可夫奖励过程中,一个状态的期望回报(即从这个状态出发的未来累计奖励的期望)被称为这个状态的价值。所有状态的价值就组成了价值函数。价值函数的输入为某个状态,输出为这个状态的价值。我么讲价值函数写成V(s) = E[G_t|S_t = s],展开为:

V(s) = E[G_t \mid S_t = s] \\ = E[R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots \mid S_t = s] \\ = E[R_t + \gamma (R_{t+1} + \gamma R_{t+2} + \cdots) \mid S_t = s] \\ = E[R_t + \gamma G_{t+1} \mid S_t = s] \\ = E[R_t + \gamma V(S_{t+1}) \mid S_t = s]

在上式的最后一个等号中,一方面,即时奖励的期望正式奖励函数的输出,即E[R_t|S_t = s] = r(s);另一方面,等式中剩余部分E[\gamma V(S_{t+1}) | S_t = s]可以从状态s出发的转移概率得到,即可以得到V(s) = r(s) + \gamma \sum_{s' \in S} p(s' \mid s) V(s'),这个公式就是马尔可夫奖励过程中的贝尔曼方程。对每一个状态都成立。若一个马尔科夫奖励过程一共有n个状态,即S = \{s_1, s_2, s_3,...s_n\},我们将所有状态的价值表示成一个列向量V = [V(s_1), V(s_2),...V(s_n)]^T,同理,将奖励函数写成一个列向量R = [r(s_1), r(s_2), ...,r(s_n)]^T,于是,我们可以将贝尔曼方程写成矩阵的形式:

根据矩阵运算求解,得到下面的解析解:

以上解析解的计算复杂度是O(n^3),其中n是状态个数,因此这种方法只适用很小的马尔可夫奖励过程。求解较大规模的马尔可夫奖励过程中的价值函数时,可以使用动态规划(dynamic programming)算法、蒙特卡洛方法(Monte-Carlo method)和时序差分(temporal difference),这些方法将在之后的章节介绍。

接下来编写代码实现求解价值函数的解析解方法,并根据此计算该马尔科夫奖励过程中所有状态的价值。

def compute(P, rewards, gamma, states_num):
    ''' 利用贝尔曼方程的矩阵形式计算解析解,states_num是MRP的状态数 '''
    rewards = np.array(rewards).reshape((-1, 1))  #将rewards写成列向量形式
    value = np.dot(np.linalg.inv(np.eye(states_num, states_num) - gamma * P),
                   rewards)
    return value


V = compute(P, rewards, gamma, 6)
print("MRP中每个状态价值分别为\n", V)
MRP中每个状态价值分别为
 [[-2.01950168]
 [-2.21451846]
 [ 1.16142785]
 [10.53809283]
 [ 3.58728554]
 [ 0.        ]]

根据以上代码,求解得到各个状态的价值V(s)

4.4 总结

本章第一部分从随机过程引出了马尔可夫过程,并介绍了马尔可夫性质;以及马尔可夫奖励过程的回报和价值函数的概念。在下一章,将会介绍马尔可夫决策过程(MDP)的策略,状态价值函数、动作价值函数、贝尔曼期望方程、贝尔曼最优方程、蒙特卡洛方法等内容

  • 22
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值