Lit-LLaMA 开源项目使用教程

JavaTravel是基于Java的开源旅游应用,展示了如何使用SpringBoot、MyBatis和Thymeleaf等技术。适合学习者和开发者提升技能,提供模块化设计、详细文档和活跃社区支持。
摘要由CSDN通过智能技术生成

Lit-LLaMA 开源项目使用教程

lit-llama Implementation of the LLaMA language model based on nanoGPT. Supports flash attention, Int8 and GPTQ 4bit quantization, LoRA and LLaMA-Adapter fine-tuning, pre-training. Apache 2.0-licensed. 项目地址: https://gitcode.com/gh_mirrors/li/lit-llama

1. 项目介绍

Lit-LLaMA 是一个基于 nanoGPT 的 LLaMA 语言模型独立实现,完全开源并遵循 Apache 2.0 许可证。该项目支持 flash attention、Int8 和 GPTQ 4bit 量化、LoRA 和 LLaMA-Adapter 微调、预训练等功能。Lit-LLaMA 旨在提供一个简单、正确、优化且开源的 LLaMA 模型实现,适用于消费级硬件或大规模部署。

2. 项目快速启动

2.1 克隆项目

首先,克隆 Lit-LLaMA 项目到本地:

git clone https://github.com/Lightning-AI/lit-llama.git
cd lit-llama

2.2 安装依赖

安装项目所需的依赖:

pip install -e ".[all]"

2.3 下载模型权重

如果还没有模型权重,可以参考项目提供的指南进行下载。

2.4 运行推理

使用以下命令运行推理,生成文本预测:

python generate.py --prompt "Hello, my name is"

该命令将运行 7B 模型,并需要大约 26 GB 的 GPU 内存(A100 GPU)。

2.5 量化模型

如果 GPU 内存有限,可以启用量化功能:

python generate.py --quantize llm int8 --prompt "Hello, my name is"

3. 应用案例和最佳实践

3.1 文本生成

Lit-LLaMA 可以用于生成各种类型的文本,如故事、对话、摘要等。通过调整 --prompt 参数,可以引导模型生成不同风格的文本。

3.2 微调模型

项目提供了 LoRA 和 Adapter 微调脚本,可以对预训练模型进行指令微调。以下是使用 LoRA 进行微调的示例:

python finetune/lora.py

3.3 预训练

如果需要对模型进行预训练,可以使用项目提供的预训练脚本,基于 RedPajama 数据集进行训练:

python pretrain.py

4. 典型生态项目

4.1 Lit-GPT

Lit-GPT 是 Lit-LLaMA 的继任项目,提供了更新的 LLaMA 2 权重和 Open LLaMA 权重。如果需要使用 LLaMA 2 或 Open LLaMA 权重,可以参考 Lit-GPT 项目。

4.2 nanoGPT

nanoGPT 是 Lit-LLaMA 的基础实现,提供了简洁的 GPT 模型实现。Lit-LLaMA 在此基础上进行了扩展和优化。

4.3 bitsandbytes

bitsandbytes 是一个用于量化和压缩模型的库,Lit-LLaMA 使用了该库进行 Int8 和 GPTQ 4bit 量化。

4.4 LoRA

LoRA 是一种参数高效的微调方法,Lit-LLaMA 提供了 LoRA 微调脚本,可以对模型进行高效的指令微调。

4.5 LLaMA-Adapter

LLaMA-Adapter 是一种适配器微调方法,Lit-LLaMA 提供了相应的微调脚本,可以对模型进行适配器微调。

lit-llama Implementation of the LLaMA language model based on nanoGPT. Supports flash attention, Int8 and GPTQ 4bit quantization, LoRA and LLaMA-Adapter fine-tuning, pre-training. Apache 2.0-licensed. 项目地址: https://gitcode.com/gh_mirrors/li/lit-llama

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毛彤影

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值