物理感知神经网络的新纪元:尊重因果性的重要性

物理感知神经网络的新纪元:尊重因果性的重要性

项目地址:https://gitcode.com/gh_mirrors/ca/CausalPINNs


1、项目介绍

在计算机科学和工程领域,物理感知神经网络(Physics-Informed Neural Networks, PINNs)正逐渐崭露头角。然而,面对复杂动态系统,尤其是多尺度、混沌或湍流行为的模拟时,现有PINNs的方法表现不尽人意。Respecting causality is all you need 项目提供了一种新颖的解决方案,通过重构PINNs损失函数以尊重物理系统的时空因果结构,从而显著提升模型准确性和训练稳定性。

该项目是由Sifan Wang、Shyam Sankaran和Paris Perdikaris共同研发,并已发表在《Computer Methods in Applied Mechanics and Engineering》上,展示了PINNs在模拟如Lorenz系统、混沌状态下的Kuramoto-Sivashinsky方程以及湍流状态下的Navier-Stokes方程等挑战性问题上的突破性成果。

2、项目技术分析

传统的PINNs方法往往忽视了物理过程中的因果关系,这在处理复杂动力学系统时成为错误来源。本项目引入了因果性尊重的训练算法,修改了PINNs的损失函数,使模型能够正确地考虑时间演化对解的影响。这种改进使得PINNs不仅在精度上有显著提升,还提供了评估模型收敛性的定量工具。

3、项目及技术应用场景

  • 流体力学模拟:对于理解和预测复杂的流体运动,如涡旋、湍流现象,该技术可以提供更精确的结果。
  • 混沌系统分析:可以应用于地球大气层、金融市场的预测,以及生物系统等混沌行为的研究。
  • 材料科学:对于研究新材料性质和演化过程,如相变和扩散现象,具有重要价值。
  • 工程设计与优化:帮助工程师优化结构设计,解决热传导、结构力学等问题,提高效率和安全性。

4、项目特点

  • 创新性:首次成功应用PINNs模拟多尺度、混沌和湍流系统,打破了既有的性能限制。
  • 简单性:仅需调整损失函数,即可实现因果性尊重的训练,无需大量额外计算资源。
  • 准确性:显著提升模型预测精度,为解决高难度问题打开了新的可能。
  • 收敛评估:提供定量的模型收敛性评估机制,有助于优化训练过程。

示例展示

项目提供了一系列演示视频,包括Allen-Cahn方程、Kuramoto-Sivashinsky方程和Navier-Stokes方程的模拟,直观展示了新方法在这些典型物理问题上的卓越效果。


这个开源项目为 PINNs 的未来开辟了新篇章,它将吸引那些寻求改善物理模拟精度和稳定性的科研人员和工程师。无论是学术界还是工业界,尊重因果性的PINNs都值得您一试。

CausalPINNs 项目地址: https://gitcode.com/gh_mirrors/ca/CausalPINNs

内容概要:本文档详细介绍了Android开发中内容提供者(ContentProvider)的使用方法及其在应用间数据共享的作用。首先解释了ContentProvider作为四大组件之一,能够为应用程序提供统一的数据访问接口,支持不同应用间的跨进程数据共享。接着阐述了ContentProvider的核心方法如onCreate、insert、delete、update、query和getType的具体功能与应用场景。文档还深入讲解了Uri的结构和作用,它是ContentProvider中用于定位资源的重要标识。此外,文档说明了如何通过ContentResolver在客户端应用中访问其他应用的数据,并介绍了Android 6.0及以上版本的运行时权限管理机制,包括权限检查、申请及处理用户的选择结果。最后,文档提供了具体的实例,如通过ContentProvider读写联系人信息、监听短信变化、使用FileProvider发送彩信和安装应用等。 适合人群:对Android开发有一定了解,尤其是希望深入理解应用间数据交互机制的开发者。 使用场景及目标:①掌握ContentProvider的基本概念和主要方法的应用;②学会使用Uri进行资源定位;③理解并实现ContentResolver访问其他应用的数据;④熟悉Android 6.0以后版本的权限管理流程;⑤掌握FileProvider在发送彩信和安装应用中的应用。 阅读建议:建议读者在学习过程中结合实际项目练习,特别是在理解和实现ContentProvider、ContentResolver以及权限管理相关代码时,多进行代码调试和测试,确保对每个知识点都有深刻的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曹俐莉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值