感知神经网络


1. 感知器

感知器:用于线性可分模式分类的最简单的神经网络模型。其由一个具有可调树突权值和偏置的神经元组成。

单层神经网络模型

  • 本质是一个非线性前馈网络。
  • 同层内无互连,不同层间无反馈,由上层向下层传递。
  • 其输入输出均为离散值,神经元对输入加权求和后,由阈值函数决定其输出。
  • 感知器实际上是一个简单的单层神经网络模型,单节点感知器就是MP模型。

在这里插入图片描述

学习过程:给定一个有输入输出实例的训练集,感知机(学习)一个函数:对每个例子,若感知机的输出值比实例低太多,则增加他的权重;反之则减少权重。 感知器是整个神经网络的基础,神经元通过响应函数确定输出,神经元之间通过权值进行传递信息,权重的确定是根据误差来进行调节的。


2. 单层感知器:线性分类

单层感知器:通过计算权重和输入的成绩的和f(x)=sigm(∑(w*x)),其根据和的正负值来判断分类。

感知器的分类逻辑

  • 计算各输入变脸加权后的和∑。
  • 根据和∑是否大于0得到分类结果。

对于任一个训练样本Xi,其输入的特征为(Xi1,Xi2)
求和:sum = X1 * W1 + X2 * W2 + b

当sum>0时,即为正类,当sum≤0时即为负类。其中sum = 0,为正负类的分界超平面。

将直线方程X1 * W1 + X2 * W2 + b = 0整理成习惯的公式:

在这里插入图片描述
其结果如下图所示:(黄色线即为分界超平面)
在这里插入图片描述

单层感知器的学习算法

此算法采用的是离散感知器的算法

离散感知器在这里插入图片描述
具体步骤

  1. 初始化权值,赋予较小的非零随机数。如果输入样本线性可分,无论初始化值如何取们都会稳定收敛。

  2. 输入样本{X,Y},其中:
    输入为 k条n+1个分量的向量:
    在这里插入图片描述
    输出为k条m个分量的向量:在这里插入图片描述

  3. 计算各输出节点的实际输出:
    在这里插入图片描述

  4. 按照实际输出值和期望值之间的差更新权重:在这里插入图片描述

  5. 返回第②步,处理下一组输入样本。

  6. 循环上述过程,直到感知器对所有样本的实际输出和期望输出一致。

单层感知器的例子

在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿tu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值