1. 感知器
感知器:用于线性可分模式分类的最简单的神经网络模型。其由一个具有可调树突权值和偏置的神经元组成。
单层神经网络模型:
- 本质是一个非线性前馈网络。
- 同层内无互连,不同层间无反馈,由上层向下层传递。
- 其输入输出均为离散值,神经元对输入加权求和后,由阈值函数决定其输出。
- 感知器实际上是一个简单的单层神经网络模型,单节点感知器就是MP模型。
学习过程:给定一个有输入输出实例的训练集,感知机(学习)一个函数:对每个例子,若感知机的输出值比实例低太多,则增加他的权重;反之则减少权重。 感知器是整个神经网络的基础,神经元通过响应函数确定输出,神经元之间通过权值进行传递信息,权重的确定是根据误差来进行调节的。
2. 单层感知器:线性分类
单层感知器:通过计算权重和输入的成绩的和f(x)=sigm(∑(w*x)),其根据和的正负值来判断分类。
感知器的分类逻辑:
- 计算各输入变脸加权后的和∑。
- 根据和∑是否大于0得到分类结果。
对于任一个训练样本Xi,其输入的特征为(Xi1,Xi2)
求和:sum = X1 * W1 + X2 * W2 + b
当sum>0时,即为正类,当sum≤0时即为负类。其中sum = 0,为正负类的分界超平面。
将直线方程X1 * W1 + X2 * W2 + b = 0整理成习惯的公式:
其结果如下图所示:(黄色线即为分界超平面)
单层感知器的学习算法
此算法采用的是离散感知器的算法
离散感知器:
具体步骤:
-
初始化权值,赋予较小的非零随机数。如果输入样本线性可分,无论初始化值如何取们都会稳定收敛。
-
输入样本{X,Y},其中:
输入为 k条n+1个分量的向量:
输出为k条m个分量的向量: -
计算各输出节点的实际输出:
-
按照实际输出值和期望值之间的差更新权重:
-
返回第②步,处理下一组输入样本。
-
循环上述过程,直到感知器对所有样本的实际输出和期望输出一致。
单层感知器的例子