生成 AI 使用案例集 (GenU) 项目文档

生成 AI 使用案例集 (GenU) 项目文档

generative-ai-use-cases-jp すぐに業務活用できるビジネスユースケース集付きの安全な生成AIアプリ実装 generative-ai-use-cases-jp 项目地址: https://gitcode.com/gh_mirrors/ge/generative-ai-use-cases-jp

项目介绍

生成 AI 使用案例集 (GenU) 是一个开源项目,旨在通过提供一系列业务使用案例,帮助用户安全地利用生成 AI 技术。该项目不仅提供了丰富的业务使用案例,还包含了一个完整的应用程序实现,用户可以通过浏览器扩展更方便地使用生成 AI 技术。

GenU 项目的主要特点包括:

  • 多样化的使用案例:涵盖了从文本生成、摘要、校对到图像生成等多个领域。
  • 安全可靠:通过 Amazon Bedrock 等 AWS 服务,确保生成 AI 的安全性和可靠性。
  • 易于扩展:用户可以根据自己的需求,轻松添加新的使用案例。

项目快速启动

环境准备

在开始之前,请确保您已经安装了 Node.js 和 npm。然后,按照以下步骤进行项目部署。

1. 克隆项目

首先,克隆项目到本地:

git clone https://github.com/aws-samples/generative-ai-use-cases-jp.git
cd generative-ai-use-cases-jp

2. 安装依赖

安装项目所需的依赖:

npm ci

3. 配置 AWS CDK

如果您是第一次使用 AWS CDK,需要先进行 Bootstrap:

npx -w packages/cdk cdk bootstrap

4. 部署项目

使用以下命令部署项目:

npm run cdk:deploy

部署过程可能需要一些时间,请耐心等待。

应用案例和最佳实践

案例一:介护现场的记录与报告自动化

公司: 株式会社やさしい手

应用: 通过 GenU 项目,介护现场的记录与报告业务得到了显著的效率提升。利用生成 AI 技术,自动生成易于阅读的报告,并从介护记录数据中生成个别作业步骤。

案例二:文章执笔支援

公司: 株式会社サルソニード

应用: 利用 GenU 的 RAG 技术,帮助市场营销人员快速生成高质量的文章。通过结合专业知识和生成 AI,大幅减少了文章制作的时间和成本。

案例三:产品实验文档管理

公司: 株式会社タムラ製作所

应用: 通过 GenU 的 RAG 技术,轻松发现和管理大量产品文档中的关键信息。此外,还利用文字转写和文档生成功能,简化了会议记录的制作。

典型生态项目

1. Amazon Bedrock

Amazon Bedrock 是 AWS 提供的一项服务,用于管理和部署生成 AI 模型。GenU 项目充分利用了 Amazon Bedrock 的安全性和可扩展性。

2. Amazon Kendra

Amazon Kendra 是一个智能搜索服务,GenU 项目中的 RAG 技术依赖于 Amazon Kendra 来获取最新的信息和领域知识。

3. AWS Lambda

AWS Lambda 是 AWS 的无服务器计算服务,GenU 项目的后端逻辑主要通过 AWS Lambda 来实现。

通过这些生态项目的结合,GenU 项目不仅提供了强大的功能,还确保了高可用性和安全性。

generative-ai-use-cases-jp すぐに業務活用できるビジネスユースケース集付きの安全な生成AIアプリ実装 generative-ai-use-cases-jp 项目地址: https://gitcode.com/gh_mirrors/ge/generative-ai-use-cases-jp

数据介绍:无人机视角水域目标检测数据 一、基础信息 数据名称:无人机视角水域目标检测数据 图片数量: - 训练:2,752张图片 - 验证:605张图片 分类类别: - Boat(船只):水域交通与作业场景中的常见载具 - Buoy(浮标):水域导航与安全标志物 - Jetski(喷气滑艇):高速水上运动载具 - Kayak(皮划艇):小型人力划桨船只 - Paddle_board(桨板):休闲运动类浮板 - Person(人员):水域活动参与者的目标检测 标注格式: YOLO格式标注,含目标边界框与类别标签,适配主流目标检测框架 数据特性: 无人机航拍视角数据,覆盖不同高度与光照条件的水域场景 二、适用场景 水域智能监测系统开发: 支持构建船只流量统计、异常行为检测等水域管理AI系统 水上救援辅助系统: 用于训练快速定位落水人员与小型船只的检测模型 水上运动安全监控: 适配冲浪区、赛艇场等场景的运动安全预警系统开发 环境生态研究: 支持浮标分布监测、水域人类活动影响分析等研究场景 三、数据优势 视角独特性: 纯无人机高空视角数据,有效模拟真实航拍检测场景 目标多样性: 覆盖6类水域高频目标,包含动态载具与静态标志物组合 标注精准性: 严格遵循YOLO标注规范,边界框与目标实际尺寸高度吻合 场景适配性: 包含近岸与开阔水域场景,支持模型泛化能力训练 任务扩展性: 适用于目标检测、运动物体追踪等多任务模型开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邓尤楚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值