spatialGLUE:空间多组学整合

空间多组学技术允许从同一组织切片获取多模态数据。为了充分发挥此类数据的潜力,我们需要空间多模态整合方法。SpatialGlue是一种具有双注意机制的图神经网络,它通过空间位置和组学测量信息实现整合,进而解密空间域(spatial domain)。SpatialGlue设计了多种实验,包括空间表观遗传组-转录组(spatial epigenome–transcriptome)和空间转录组-蛋白质组(spatial transcriptome–proteome)。与其他方法相比,SpatialGlue 捕获了更多的细节,并更准确地解析了空间域,例如大脑皮层。SpatialGLUE还识别了位于三个不同区域的细胞类型,例如脾脏巨噬细胞亚群。

来自:Deciphering spatial domains from spatial multi-omics with SpatialGlue

背景概述

空间转录组是自单细胞转录组问世以来分析生物样本的重大发展。目前,空间技术正在扩展到空间多组学,即在单个组织切片上同时分析不同的组学。这些技术大致可分为两类:基于测序和基于成像。基于测序的技术包括 DBiT-seq、Spatial-CITE-seq、Spatial ATAC-RNA-seq以及 CUT&Tag-RNA-seq、SPOTS、SM-Omics、Stereo-CITE-seq、空间 RNA-TCR-seq 和 10x Genomics Xenium,而基于成像的技术包括 DNA seqFISH+、基于 DNA-MERFISH 的 DNA 和 RNA 分析(DNA and RNA profiling)、MERSCOPE 和 Nanostring CosMx。借助这些技术,我们现在可以在空间环境中获取多个互补的分子视图。这为深入了解组织特性提供了数据来源。

为了充分利用空间多组学数据来构建所研究组织的连贯图景,需要对异质性的模态进行兼顾空间信息的整合。这种多组学数据整合带来了重大挑战,因为不同模态的特征数量可能相差很大(例如,蛋白质组特征数量与转录组特征数量),并且具有不同的统计分布。当将空间信息与每个数据模态内的特征整合时,这一挑战更加严峻。在SpatialGLUE前,还没有专门为从同一组织切片获取的空间多组学数据而设计的工具。

相关工作

现有方法要么是单模态的,要么就不使用空间信息,对于工具 MEFISTO,该工具之前仅在单细胞多组学或空间转录组上进行了演示。对于非空间多组学数据整合方法,有多种算法可用。这些包括 Seurat WNN、MOFA+、StabMap、totalVI、MultiVI 和 scMM。此外,其中一些方法是为特定数据模态设计的,这可能会受到限制。例如,totalVI 是为 RNA 和蛋白质模态的 CITE-seq 数据设计的,而 MultiVI 针对基因表达和染色质可及性进行了优化。

对于空间组学工具,示例包括 STAGATE、SpaGCN 和 GraphST,它们整合了空间信息和单模态测量数据。这种单组学方法只能通过连接来自异质组学模态的特征count数据来处理空间多组学数据。这种方法假设不同组学之间的特征具有相同的重要性,但这显然不是最合理的做法。因此,需要专门针对空间多组学数据量身定制工具。最紧迫的是,我们需要能够进行空间感知跨组学整合的新方法。

贡献

SpatialGlue 是一种空间整合方法,它整合了从同一组织切片获取的多组学数据,以空间分辨率解读组织样本的空间域。SpatialGlue 使用图神经网络来学习每种数据模态的嵌入,然后跨模态进行整合。为了利用空间信息促进跨组学整合,SpatialGLUE采用了双重注意力聚合机制来自适应地捕捉不同模态的重要性。首先在模拟和实验获取的人类淋巴结数据上测试了 SpatialGlue,并附有Ground Truth,以将其性能与其他方法进行比较。SpatialGlue 实现了比其他方法更好的性能,并捕获了更多的切片细节。然后,在更多数据集上测试了 SpatialGlue 和对比方法,以整合小鼠大脑的空间表观遗传组和转录组,或者从小鼠胸腺和脾脏获得的空间转录组和蛋白质组数据。SpatialGlue 利用表观遗传组-转录组数据来分类出比原始数据注释更多的皮质层,并利用转录组-蛋白质组来分类出脾脏内的巨噬细胞亚群。这些结果凸显了多模态空间组学在分析生物复杂性方面的优势。

模型架构

SpatialGlue 通过将多组学数据与空间信息有效整合,以解读组织样本的空间域。SpatialGlue 是一种基于图神经网络 (GNN) 的深度学习模型(图 1b)。SpatialGlue 的输入数据可以是segmented cells或locations(beads, voxels, pixels, bins or spots)的特征矩阵,每个spot附带空间坐标。为简单起见,统一将cells和locations称为spots。对于整合,SpatialGlue 在两个层面上使用双注意机制,首先是模态内空间信息和测量特征的整合,然后是跨模态的多组学整合。

对于消融实验,为了评估 SpatialGlue 的有效性,首先使用模拟数据通过一系列消融实验验证了注意力和其他组件的重要性。

fig1b

  • 图1b:SpatialGlue 首先使用 k-近邻 (KNN) ,基于空间坐标构建空间邻居图,并使用每个组学模态的归一化counts数据构建特征邻居图。然后,对于每个模态,GNN 编码器通过迭代来聚合邻居的表示。为了捕捉不同图的重要性(空间图和特征图),这里设计了一个模态内注意力聚合层,以自适应地整合并获得特定于模态的表示。最后,为了建模不同模态的重要性,SpatialGlue 使用模态间注意力聚合层来自适应地整合并输出最终的spot表示。

图的构建细节

对于空间图,用坐标+KNN构建,对于特征图,用PCA embedding+KNN构建。我们首先考虑一个具有两种模态的空间数据集,每个数据集都有一个特定的特征集 X 1 ∈ R N × d 1 X_{1}\in\R^{N\times d_{1}} X1RN×d1 X 2 ∈ R N × d 2 X_{2}\in\R^{N\times d_{2}} X2RN×d<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值