PromptIR 项目使用教程

PromptIR 项目使用教程

PromptIR PromptIR: Prompting for All-in-One Blind Image Restoration [NeurIPS 2023] PromptIR 项目地址: https://gitcode.com/gh_mirrors/pr/PromptIR

1. 项目的目录结构及介绍

PromptIR/
├── ckpt/
│   └── (模型检查点文件)
├── data/
│   └── Train/
│       └── (训练数据)
├── data_dir/
│   └── (数据目录)
├── net/
│   └── (网络相关文件)
├── utils/
│   └── (工具文件)
├── .gitignore
├── INSTALL.md
├── LICENSE.md
├── README.md
├── demo.py
├── env.yml
├── mainfig.png
├── options.py
├── prompt-ir-results.png
├── test.py
├── train.py
└── (其他文件)

目录结构介绍

  • ckpt/: 存放模型检查点文件的目录。
  • data/: 存放训练数据的目录。
  • data_dir/: 数据目录。
  • net/: 存放网络相关文件的目录。
  • utils/: 存放工具文件的目录。
  • .gitignore: Git忽略文件配置。
  • INSTALL.md: 安装指南。
  • LICENSE.md: 项目许可证。
  • README.md: 项目介绍文档。
  • demo.py: 演示脚本。
  • env.yml: 环境配置文件。
  • mainfig.png: 主图文件。
  • options.py: 选项配置文件。
  • prompt-ir-results.png: 结果图文件。
  • test.py: 测试脚本。
  • train.py: 训练脚本。

2. 项目的启动文件介绍

train.py

train.py 是用于启动模型训练的脚本。通过该脚本,用户可以选择不同的降质类型进行训练。

使用示例:

python train.py --de_type derain dehaze

test.py

test.py 是用于启动模型测试的脚本。用户可以通过设置不同的模式来评估模型在不同降质类型上的表现。

使用示例:

python test.py --mode 3

demo.py

demo.py 是用于演示的脚本。用户可以通过该脚本对图像进行推理,并生成可视化结果。

使用示例:

python demo.py --test_path '/test/demo/' --output_path '/output/demo/'

3. 项目的配置文件介绍

env.yml

env.yml 是用于配置项目运行环境的文件。用户可以通过该文件创建一个虚拟环境,并安装所需的依赖包。

使用示例:

conda env create -f env.yml

options.py

options.py 是用于配置训练和测试选项的文件。用户可以通过修改该文件中的参数来调整模型的训练和测试行为。

主要配置项:

  • de_type: 降质类型,如 deraindehaze 等。
  • mode: 测试模式,如 0 表示去噪,1 表示去雨,2 表示去雾,3 表示全模式。

INSTALL.md

INSTALL.md 是项目的安装指南。用户可以通过该文件了解如何安装项目所需的依赖和准备数据集。

主要内容:

  • 依赖安装
  • 数据集准备
  • 模型训练和测试

通过以上模块的介绍,用户可以快速了解并使用 PromptIR 项目进行图像恢复任务。

PromptIR PromptIR: Prompting for All-in-One Blind Image Restoration [NeurIPS 2023] PromptIR 项目地址: https://gitcode.com/gh_mirrors/pr/PromptIR

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鲁景晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值