PromptIR 项目使用教程
1. 项目的目录结构及介绍
PromptIR/
├── ckpt/
│ └── (模型检查点文件)
├── data/
│ └── Train/
│ └── (训练数据)
├── data_dir/
│ └── (数据目录)
├── net/
│ └── (网络相关文件)
├── utils/
│ └── (工具文件)
├── .gitignore
├── INSTALL.md
├── LICENSE.md
├── README.md
├── demo.py
├── env.yml
├── mainfig.png
├── options.py
├── prompt-ir-results.png
├── test.py
├── train.py
└── (其他文件)
目录结构介绍
- ckpt/: 存放模型检查点文件的目录。
- data/: 存放训练数据的目录。
- data_dir/: 数据目录。
- net/: 存放网络相关文件的目录。
- utils/: 存放工具文件的目录。
- .gitignore: Git忽略文件配置。
- INSTALL.md: 安装指南。
- LICENSE.md: 项目许可证。
- README.md: 项目介绍文档。
- demo.py: 演示脚本。
- env.yml: 环境配置文件。
- mainfig.png: 主图文件。
- options.py: 选项配置文件。
- prompt-ir-results.png: 结果图文件。
- test.py: 测试脚本。
- train.py: 训练脚本。
2. 项目的启动文件介绍
train.py
train.py
是用于启动模型训练的脚本。通过该脚本,用户可以选择不同的降质类型进行训练。
使用示例:
python train.py --de_type derain dehaze
test.py
test.py
是用于启动模型测试的脚本。用户可以通过设置不同的模式来评估模型在不同降质类型上的表现。
使用示例:
python test.py --mode 3
demo.py
demo.py
是用于演示的脚本。用户可以通过该脚本对图像进行推理,并生成可视化结果。
使用示例:
python demo.py --test_path '/test/demo/' --output_path '/output/demo/'
3. 项目的配置文件介绍
env.yml
env.yml
是用于配置项目运行环境的文件。用户可以通过该文件创建一个虚拟环境,并安装所需的依赖包。
使用示例:
conda env create -f env.yml
options.py
options.py
是用于配置训练和测试选项的文件。用户可以通过修改该文件中的参数来调整模型的训练和测试行为。
主要配置项:
de_type
: 降质类型,如derain
、dehaze
等。mode
: 测试模式,如0
表示去噪,1
表示去雨,2
表示去雾,3
表示全模式。
INSTALL.md
INSTALL.md
是项目的安装指南。用户可以通过该文件了解如何安装项目所需的依赖和准备数据集。
主要内容:
- 依赖安装
- 数据集准备
- 模型训练和测试
通过以上模块的介绍,用户可以快速了解并使用 PromptIR 项目进行图像恢复任务。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考