Autoencoding Variational Inference for Topic Models 项目教程

Autoencoding Variational Inference for Topic Models 项目教程

autoencoding_vi_for_topic_modelsTensorflow implementation for prodLDA and NVLDA.项目地址:https://gitcode.com/gh_mirrors/au/autoencoding_vi_for_topic_models

1. 项目的目录结构及介绍

autoencoding_vi_for_topic_models/
├── coherence_from_paper_script
├── data
├── models
├── .gitignore
├── LICENSE
├── README.md
├── _config.yml
└── run.py
  • coherence_from_paper_script: 包含从论文中提取一致性脚本的文件。
  • data: 用于存放项目数据的目录。
  • models: 包含项目中使用的模型文件。
  • .gitignore: 指定Git版本控制系统忽略的文件和目录。
  • LICENSE: 项目的许可证文件。
  • README.md: 项目说明文档。
  • _config.yml: 项目的配置文件。
  • run.py: 项目的启动文件。

2. 项目的启动文件介绍

run.py 是项目的启动文件,负责运行模型。以下是该文件的基本介绍:

# run.py

# 导入必要的库
import argparse
import os
import tensorflow as tf
from models import prodLDA, NVLDA

# 定义命令行参数解析器
parser = argparse.ArgumentParser(description='Run topic models.')
parser.add_argument('-m', '--model', type=str, required=True, help='Model type: prodlda or nvlda')
parser.add_argument('-f', '--num_filters', type=int, default=100, help='Number of filters')
parser.add_argument('-s', '--hidden_size', type=int, default=100, help='Hidden size')
parser.add_argument('-t', '--num_topics', type=int, default=50, help='Number of topics')
parser.add_argument('-b', '--batch_size', type=int, default=200, help='Batch size')
parser.add_argument('-r', '--learning_rate', type=float, default=0.002, help='Learning rate')

# 解析命令行参数
args = parser.parse_args()

# 根据参数选择模型并运行
if args.model == 'prodlda':
    model = prodLDA(args.num_filters, args.hidden_size, args.num_topics, args.batch_size, args.learning_rate)
elif args.model == 'nvlda':
    model = NVLDA(args.num_filters, args.hidden_size, args.num_topics, args.batch_size, args.learning_rate)
else:
    raise ValueError("Invalid model type. Choose 'prodlda' or 'nvlda'.")

model.train()

3. 项目的配置文件介绍

_config.yml 是项目的配置文件,用于存储项目的各种配置参数。以下是该文件的基本介绍:

# _config.yml

# 数据路径配置
data_path: "data/"

# 模型配置
num_filters: 100
hidden_size: 100
num_topics: 50
batch_size: 200
learning_rate: 0.002

# 其他配置
log_path: "logs/"
checkpoint_path: "checkpoints/"

该配置文件定义了数据路径、模型参数和其他相关配置,方便用户根据需要进行调整。

autoencoding_vi_for_topic_modelsTensorflow implementation for prodLDA and NVLDA.项目地址:https://gitcode.com/gh_mirrors/au/autoencoding_vi_for_topic_models

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
变分推断是一种用于近似求解复杂概率模型后验概率分布的技术。在贝叶斯统计中,我们希望从观测数据推断出最有可能的模型参数。然而,在大多数情况下,由于模型复杂性和计算复杂度的限制,我们很难直接计算后验分布。这时候,变分推断能够通过引入一个简化的概率分布来近似后验分布。 变分推断的基本思想是为原始贝叶斯问题构造一个等价的变分问题,并通过最小化两者之间的差异来求解。具体而言,它假设一个简单的参数化概率分布(即变分分布),并试图通过调整分布参数来使其尽可能接近真实后验。 为了找到最优的变分分布,变分推断利用变分推理和优化方法进行迭代求解。在每次迭代中,它通过最大化变分推理下界来逼近后验分布。这个下界称为证据下界或ELBO(证据下界)。 变分推断的优点在于它可以同时处理大规模和高复杂度的模型,而且能够处理连续和离散变量的混合问题。它还可以灵活地处理缺失数据并处理不同类型数据之间的关联。 然而,变分推断也有其局限性。首先,变分分布选择是一个挑战,如果选择的分布偏离真实后验分布,可能导致近似结果的偏差。其次,变分推断通常需要计算复杂度高且对初始参数值敏感的迭代求解。因此,它可能无法在所有情况下提供最优的近似解。 综上所述,变分推断是一种强大的近似推理方法,可以用于处理复杂概率模型的后验分布。它在计算效率和模型灵活性方面具有一定优势,但同时也存在某些局限性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倪焰尤Quenna

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值