Variational inference with Gaussian mixture model and householder flow

1. 标题:在变分推断中使用GMM和householder

2. 摘要精读

在这里插入图片描述

3. 文中需要掌握的知识点

3.1 什么是Normalizing Flow

在这里插入图片描述

3.2 通过NF得到了什么样得变分下界

  • 通过NF,我们得后验分布可以变为如下,其中,z维随机变量,服从q分布,行列式维雅可比矩阵。
    在这里插入图片描述
  • 然后利用性质:
    在这里插入图片描述
  • 得到变分下界
    在这里插入图片描述

3.3 网络的结构

在这里插入图片描述

3.4 如何计算两个GMM之间的KL散度(会推导)

  • 利用一个log-sum不等式
    在这里插入图片描述
    在这里插入图片描述
  • 我们知道单个高斯之间的KL散度是有解析解的,我们通过这样的不等式得到了一个有解析解的上界,这对我们计算KL散度有很大的帮助。所以我们定义,
    在这里插入图片描述

3.5 Householder Flow

参考文章

  • 这样就解决了变分下界的第二项在这里插入图片描述

3.6 总结算法

在这里插入图片描述

4. 实验部分需要注意的地方

  • 通过实验证明,GMM分布中的mixture_logits的系数不会影响实验的效果,所以可以将mixture_logits平均分配即可
  • VAEGH表现比其他模型都要好。
  • 随着components M的增大,我们可以得到一个更加灵活和复杂的近似后验分布,因此,重构误差会变得越来越好。但是另一方面,当M 很大时,整个网络的参数量会急剧增加,这肯定会影响网络的性能
  • 所以说我们的后验分布的灵活性不仅取决于M的选择,而且更重要的是取决于从GMM中学习到的均值和方差。

5. 我觉得比较好的图

  • MNIST和Fashion-MNIST两个数据集的µ平均值的二维可视化。每个图形由40维潜在变量空间的t-SNE进行转换。在每一行中,从左到右,结果与VAE和我们的方法相对应,依次为M、2、3、10和50。每种颜色代表一个类别标签。在这里插入图片描述
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

InceptionZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值