视频字幕处理助手 VideoCaptioner 安装与配置指南
1. 项目基础介绍
VideoCaptioner 是一款基于大语言模型(LLM)的视频字幕处理助手,它支持视频字幕生成、断句、校正、翻译等全流程处理。该项目旨在为视频配上自然流畅、质量上乘的字幕,提升观看体验。主要编程语言为 Python。
2. 项目使用的关键技术和框架
- 大语言模型(LLM): 用于字幕断句、校正和翻译,如 gpt-4o-mini、gemini-2.0-flash 等。
- WhisperCpp: 用于本地语音识别,支持多语言。
- fasterWhisper: 更高效的本地语音识别模型,支持 CUDA 加速。
- streamlit: 用于构建交互式应用界面。
- ffmpeg: 用于视频处理和字幕合成。
3. 项目安装和配置的准备工作
准备工作
- 确保您的操作系统为 Windows 或 Linux,MacOS 暂不支持。
- 安装 Python 3.x 版本。
- 安装 Node.js 和 npm(用于部分依赖包的安装)。
- 准备好网络环境,以便下载必要的依赖和模型。
安装步骤
步骤 1: 克隆项目
首先,在命令行中运行以下命令克隆项目:
git clone https://github.com/WEIFENG2333/VideoCaptioner.git
cd VideoCaptioner
步骤 2: 安装依赖
使用以下命令安装项目依赖:
pip install -r requirements.txt
步骤 3: 运行程序
在项目根目录下运行以下命令启动程序:
python main.py
步骤 4: 配置 LLM API
根据项目文档中的说明,配置 LLM API。如果使用的是中转站,需要在设置中配置 BaseURL 和 API-key。
步骤 5: 配置翻译服务
在设置中配置翻译服务,可以选择 LLM 大模型翻译、DeepLx 翻译、微软翻译或谷歌翻译。
步骤 6: 配置语音识别接口
根据需要选择合适的语音识别接口,如 WhisperCpp 或 fasterWhisper,并下载相应的模型。
步骤 7: 字幕样式调整
在设置中调整字幕样式,包括字幕模板和格式。
完成以上步骤后,您就可以开始使用 VideoCaptioner 处理视频字幕了。按照软件界面的提示进行操作,享受字幕处理的便捷与高效。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考