VideoCaptioner:北大推出视频字幕处理神器,AI自动生成+断句+翻译,1小时工作量5分钟搞定

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 “字幕工具进入GPT时代!北大团队开源VideoCaptioner:用LLM理解视频语义,翻译准确率超人工”

大家好,我是蚝油菜花。当别人还在用AI生成短视频时,顶尖学府已用大模型重构创作工具!

VideoCaptioner 的三大技术突破:

  • ✅ 语义级断句:基于LLM理解视频内容,告别机械按秒切分
  • ✅ 学术级校正:自动识别代码/公式/专业术语,错误率下降76%
  • ✅ 隐私优先设计:本地运行+人声分离,保护商业视频机密

依托Whisper语音识别+自研优化算法,它正在重新定义「智能创作」——接下来我们将实测Windows/Mac双平台部署,手把手教你打造自动化字幕生产线!

🚀 快速阅读

VideoCaptioner 是一款基于大语言模型(LLM)的智能字幕处理工具,能简化视频字幕的生成与优化流程。

  1. 核心功能:支持语音识别、字幕断句、优化、翻译及视频合成的全流程处理。
  2. 技术原理:利用多种语音识别引擎和大语言模型进行智能断句、校正和翻译,支持离线运行和隐私保护。

VideoCaptioner 是什么

VideoCaptioner

VideoCaptioner(中文名:卡卡字幕助手)是基于大语言模型的智能字幕处理工具,旨在简化视频字幕的生成与优化流程。它支持语音识别、字幕断句、校正、翻译及视频合成的全流程处理,无需GPU即可运行,操作简单高效。

该工具提供多种语音识别引擎,包括在线接口和本地Whisper模型,支持多平台视频下载与处理,能够优化字幕的专业性和流畅性。VideoCaptioner 支持字幕样式调整和多种格式导出,适合各类视频创作者和字幕工作者使用。

VideoCaptioner 的主要功能

  • 语音识别:支持多种语音识别引擎,包括在线接口(如B接口、J接口)和本地Whisper模型(如WhisperCpp、fasterWhisper)。提供多种语言支持,支持离线运行,保护用户隐私。支持人声分离和背景噪音过滤,提升语音识别的准确率。
  • 字幕断句与优化:基于大语言模型进行智能断句,将逐字字幕重组为自然流畅的语句。自动优化专业术语、代码片段和数学公式格式,提升字幕的专业性。支持上下文断句优化,结合文稿或提示进一步提升字幕质量。
  • 字幕翻译:结合上下文进行智能翻译,确保译文准确且符合语言习惯。采用“翻译-反思-翻译”方法论,通过迭代优化提升翻译质量。支持多种语言的翻译,满足不同用户需求。
  • 字幕样式调整:提供多种字幕样式模板,如科普风、新闻风、番剧风等。支持多种字幕格式(如SRT、ASS、VTT、TXT),满足不同平台需求。支持自定义字幕位置、字体、颜色等样式设置。
  • 视频字幕合成:支持批量视频字幕合成,提升处理效率。支持字幕最大长度设置和末尾标点去除,确保字幕美观。支持关闭视频合成,仅生成字幕文件。
  • 多平台视频下载与处理:支持国内外主流视频平台(如B站、YouTube)的视频下载。支持自动提取视频原有字幕进行处理。支持导入Cookie信息,下载需要登录的视频资源。

VideoCaptioner 的技术原理

  • 语音识别引擎:集成多种语音识别引擎,包括在线接口和本地Whisper模型。本地Whisper模型支持离线运行,保护用户隐私。通过VAD(语音活动检测)和音频分离技术,提升语音识别的准确率。
  • 大语言模型:利用大语言模型进行智能断句、校正和翻译。支持多种LLM API配置,如SiliconCloud、DeepSeek、Ollama等。通过“翻译-反思-翻译”方法论,提升翻译质量和准确性。
  • 文稿匹配:支持填写术语表、原字幕文稿和修正要求,辅助字幕优化和翻译。结合文稿内容,提升字幕的准确性和连贯性。

如何运行 VideoCaptioner

1. Windows 用户
  1. Release 页面下载最新版本的可执行程序。
  2. 打开安装包进行安装。
  3. LLM API 配置(用于字幕断句、校正),可使用 本项目的中转站
  4. 翻译配置,选择是否启用翻译,翻译服务(默认使用微软翻译,推荐使用大模型翻译)。
  5. 语音识别配置(默认使用B接口,中英以外的语言请使用本地转录)。
  6. 拖拽视频文件到软件窗口,即可全自动处理。
2. MacOS 用户

由于缺少 Mac 测试环境,暂无法提供 MacOS 的可执行程序。Mac 用户请自行使用下载源码和安装 Python 依赖运行。

2.1. 安装 ffmpeg 和 Aria2 下载工具:
brew install ffmpeg
brew install aria2
brew install python@3.*
2.2. 克隆项目:
git clone https://github.com/WEIFENG2333/VideoCaptioner.git
cd VideoCaptioner
2.3. 安装依赖:
python3.* -m venv venv
source venv/bin/activate
pip install -r requirements.txt
2.4. 运行程序:
python main.py
3. Docker 部署(beta)
3.1. 克隆项目:
git clone https://github.com/WEIFENG2333/VideoCaptioner.git
cd VideoCaptioner
3.2. 构建镜像:
docker build -t video-captioner .
3.3. 运行容器:
docker run -d \
   -p 8501:8501 \
   -v $(pwd)/temp:/app/temp \
   -e OPENAI_BASE_URL="你的API地址" \
   -e OPENAI_API_KEY="你的API密钥" \
   --name video-captioner \
   video-captioner
3.4. 访问应用:

打开浏览器访问:http://localhost:8501

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值