卡卡字幕助手(VideoCaptioner)使用教程

卡卡字幕助手(VideoCaptioner)使用教程

VideoCaptioner 🎬 卡卡字幕助手 | VideoCaptioner - 基于 LLM 的智能字幕助手,无需GPU一键高质量字幕视频合成!视频字幕生成、断句、校正、字幕翻译全流程。让字幕制作简单高效! VideoCaptioner 项目地址: https://gitcode.com/gh_mirrors/vi/VideoCaptioner

1. 项目介绍

卡卡字幕助手(VideoCaptioner)是一款基于大语言模型(LLM)的视频字幕处理助手。它支持语音识别、字幕断句、优化、翻译等全流程处理,能够为视频配上效果惊艳的字幕。项目旨在提供一种简单且无需高配置的方法,通过利用大语言模型进行字幕智能断句、校正、翻译,实现视频字幕的一键处理。

2. 项目快速启动

Windows 用户

  1. Release 页面下载最新版本的可执行程序。
  2. 打开安装包进行安装。
  3. 配置LLM API(用于字幕断句、校正),可使用本项目的中转站。
  4. 翻译配置,选择是否启用翻译,默认使用微软翻译。
  5. 语音识别配置,默认使用B接口,中英以外的语言请使用本地转录。
  6. 拖拽视频文件到软件窗口,即可全自动处理。

MacOS 用户

由于项目作者缺少Mac测试环境,暂无法提供MacOS的可执行程序。Mac用户请自行使用下载源码和安装python依赖运行。

git clone https://github.com/WEIFENG2333/VideoCaptioner.git
cd VideoCaptioner
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python main.py

Docker 部署(beta)

  1. 克隆项目
git clone https://github.com/WEIFENG2333/VideoCaptioner.git
cd VideoCaptioner
  1. 构建镜像
docker build -t video-captioner .
  1. 运行容器
docker run -d \
-p 8501:8501 \
-v $(pwd)/temp:/app/temp \
-e OPENAI_BASE_URL="你的API地址" \
-e OPENAI_API_KEY="你的API密钥" \
--name video-captioner \
video-captioner
  1. 访问应用

打开浏览器访问:http://localhost:8501

3. 应用案例和最佳实践

应用案例

  • 处理一个14分钟1080P的B站英文TED视频,调用本地Whisper模型进行语音识别,使用gpt-4o-mini模型优化和翻译为中文,总共消耗时间约4分钟。
  • 近后台计算,模型优化和翻译消耗费用不足¥0.01。

最佳实践

  • 对于不同的语言,选择合适的语音识别模型,例如中文建议使用medium以上模型,英文等使用较小模型即可。
  • 在字幕优化与翻译时,开启智能断句和字幕校正,以提升字幕质量和观看体验。
  • 根据需求选择合适的翻译服务,推荐使用LLM大模型翻译以获得最佳翻译质量。

4. 典型生态项目

  • GitHub Copilot: Write better code with AI
  • Security:Find and fix vulnerabilities
  • Actions:Automate any workflow
  • Codespaces:Instant dev environments
  • Issues:Plan and track work
  • Code Review:Manage code changes
  • Discussions:Collaborate outside of code
  • Code Search:Find more, search less

以上是卡卡字幕助手(VideoCaptioner)的使用教程,希望对您有所帮助。

VideoCaptioner 🎬 卡卡字幕助手 | VideoCaptioner - 基于 LLM 的智能字幕助手,无需GPU一键高质量字幕视频合成!视频字幕生成、断句、校正、字幕翻译全流程。让字幕制作简单高效! VideoCaptioner 项目地址: https://gitcode.com/gh_mirrors/vi/VideoCaptioner

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尚学红Vandal

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值