卡卡字幕助手(VideoCaptioner)使用教程
1. 项目介绍
卡卡字幕助手(VideoCaptioner)是一款基于大语言模型(LLM)的视频字幕处理助手。它支持语音识别、字幕断句、优化、翻译等全流程处理,能够为视频配上效果惊艳的字幕。项目旨在提供一种简单且无需高配置的方法,通过利用大语言模型进行字幕智能断句、校正、翻译,实现视频字幕的一键处理。
2. 项目快速启动
Windows 用户
- 从 Release 页面下载最新版本的可执行程序。
- 打开安装包进行安装。
- 配置LLM API(用于字幕断句、校正),可使用本项目的中转站。
- 翻译配置,选择是否启用翻译,默认使用微软翻译。
- 语音识别配置,默认使用B接口,中英以外的语言请使用本地转录。
- 拖拽视频文件到软件窗口,即可全自动处理。
MacOS 用户
由于项目作者缺少Mac测试环境,暂无法提供MacOS的可执行程序。Mac用户请自行使用下载源码和安装python依赖运行。
git clone https://github.com/WEIFENG2333/VideoCaptioner.git
cd VideoCaptioner
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python main.py
Docker 部署(beta)
- 克隆项目
git clone https://github.com/WEIFENG2333/VideoCaptioner.git
cd VideoCaptioner
- 构建镜像
docker build -t video-captioner .
- 运行容器
docker run -d \
-p 8501:8501 \
-v $(pwd)/temp:/app/temp \
-e OPENAI_BASE_URL="你的API地址" \
-e OPENAI_API_KEY="你的API密钥" \
--name video-captioner \
video-captioner
- 访问应用
打开浏览器访问:http://localhost:8501
3. 应用案例和最佳实践
应用案例
- 处理一个14分钟1080P的B站英文TED视频,调用本地Whisper模型进行语音识别,使用gpt-4o-mini模型优化和翻译为中文,总共消耗时间约4分钟。
- 近后台计算,模型优化和翻译消耗费用不足¥0.01。
最佳实践
- 对于不同的语言,选择合适的语音识别模型,例如中文建议使用medium以上模型,英文等使用较小模型即可。
- 在字幕优化与翻译时,开启智能断句和字幕校正,以提升字幕质量和观看体验。
- 根据需求选择合适的翻译服务,推荐使用LLM大模型翻译以获得最佳翻译质量。
4. 典型生态项目
- GitHub Copilot: Write better code with AI
- Security:Find and fix vulnerabilities
- Actions:Automate any workflow
- Codespaces:Instant dev environments
- Issues:Plan and track work
- Code Review:Manage code changes
- Discussions:Collaborate outside of code
- Code Search:Find more, search less
以上是卡卡字幕助手(VideoCaptioner)的使用教程,希望对您有所帮助。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考