PyTorch X-Vectors 项目使用教程

PyTorch X-Vectors 项目使用教程

pytorch_xvectorsDeep speaker embeddings in PyTorch, including x-vectors. Code used in this work: https://arxiv.org/abs/2007.16196项目地址:https://gitcode.com/gh_mirrors/py/pytorch_xvectors

1. 项目的目录结构及介绍

pytorch_xvectors/
├── cmd.sh
├── compute_valid_acc.py
├── extract.py
├── models.py
├── path.sh
├── pytorch_run.sh
├── README.md
├── subsetEgsIntoHdf5.py
├── train_proto.py
├── train_relation.py
├── train_utils.py
├── train_xent.py
├── LICENSE
└── egs/
    ├── demo_wav/
    ├── demo_rttm/
    └── diarize.sh
  • cmd.sh, path.sh: 用于设置环境变量的脚本。
  • compute_valid_acc.py: 计算验证集准确率的脚本。
  • extract.py: 用于提取特征的脚本。
  • models.py: 定义模型的脚本。
  • pytorch_run.sh: 项目的主启动脚本。
  • README.md: 项目说明文档。
  • subsetEgsIntoHdf5.py: 将数据集子集转换为HDF5格式的脚本。
  • train_proto.py, train_relation.py, train_utils.py, train_xent.py: 训练相关脚本。
  • LICENSE: 项目许可证文件。
  • egs/: 示例数据和脚本目录。
    • demo_wav/: 存放示例音频文件。
    • demo_rttm/: 存放示例RTTM文件。
    • diarize.sh: 用于说话人识别的脚本。

2. 项目的启动文件介绍

pytorch_run.sh

这是项目的主启动脚本,用于执行训练、验证和测试等任务。可以通过设置不同的阶段(stage)来执行不同的操作。

# 设置阶段为7,执行测试
bash pytorch_run.sh --stage 7

# 设置阶段为9,使用预训练的PLDA模型
bash pytorch_run.sh --stage 9

3. 项目的配置文件介绍

train_xent.py

这是训练脚本,包含了许多配置参数,可以通过命令行参数进行设置。

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 train_xent.py <egsDir>
  • --local_rank: 分布式训练的本地排名。
  • --modelType: 模型类型,参考 train_utils.py
  • --featDim: 特征维度。
  • --resumeTraining: 是否恢复训练。
  • --resumeModelDir: 恢复训练的模型目录。
  • --numArchives: 数据集归档数量。
  • --numSpkrs: 说话人数量。
  • --logStepSize: 日志记录步长。
  • --batchSize: 批处理大小。
  • --numEgsPerArk: 每个归档的示例数量。
  • --preFetchRatio: 预取比率。
  • --optimMomentum: 优化器动量。
  • --baseLR: 基础学习率。
  • --maxLR: 最大学习率。
  • --numEpochs: 训练轮数。
  • --noiseEps: 噪声边界。
  • --pDropMax: 最大dropout概率。
  • --stepFrac: 步长分数。

通过这些配置参数,可以灵活地调整训练过程。

pytorch_xvectorsDeep speaker embeddings in PyTorch, including x-vectors. Code used in this work: https://arxiv.org/abs/2007.16196项目地址:https://gitcode.com/gh_mirrors/py/pytorch_xvectors

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
好的,下面提供一个使用PyTorch实现Transformer模型的实战案例。 首先,我们需要导入必要的库和模块: ```python import math import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable ``` 接着,我们定义一些超参数: ```python d_model = 512 # 模型维度 n_layers = 6 # 层数 n_heads = 8 # 头数 dropout = 0.1 # Dropout概率 ``` 定义位置编码函数: ```python class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1).float() div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False) return self.dropout(x) ``` 定义多头自注意力机制模块: ```python class MultiHeadedAttention(nn.Module): def __init__(self, n_heads, d_model, dropout=0.1): super(MultiHeadedAttention, self).__init__() assert d_model % n_heads == 0 self.d_k = d_model // n_heads self.n_heads = n_heads self.linears = nn.ModuleList([nn.Linear(d_model, d_model) for _ in range(4)]) self.dropout = nn.Dropout(p=dropout) def attention(self, q, k, v, mask=None, dropout=None): scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn = F.softmax(scores, dim=-1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, v), p_attn def forward(self, query, key, value, mask=None): if mask is not None: mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = [l(x).view(nbatches, -1, self.n_heads, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, attn = self.attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.n_heads * self.d_k) return self.linears[-1](x), attn ``` 定义前馈神经网络模块: ```python class PositionwiseFeedForward(nn.Module): def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) ``` 定义一个Transformer层模块: ```python class TransformerLayer(nn.Module): def __init__(self, d_model, n_heads, dropout=0.1): super(TransformerLayer, self).__init__() self.self_attn = MultiHeadedAttention(n_heads, d_model, dropout=dropout) self.feed_forward = PositionwiseFeedForward(d_model, d_model*4, dropout=dropout) self.sublayer = nn.ModuleList([SublayerConnection(d_model, dropout=dropout) for _ in range(2)]) self.d_model = d_model def forward(self, x, mask): x, _ = self.self_attn(x, x, x, mask=mask) x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask=mask)) x = self.sublayer[1](x, self.feed_forward) return x ``` 定义一个包含若干个Transformer层的Transformer模块: ```python class Transformer(nn.Module): def __init__(self, n_layers, d_model, n_heads, dropout=0.1): super(Transformer, self).__init__() self.layers = nn.ModuleList([TransformerLayer(d_model, n_heads, dropout=dropout) for _ in range(n_layers)]) self.norm = nn.LayerNorm(d_model) def forward(self, x, mask): for layer in self.layers: x = layer(x, mask) return self.norm(x) ``` 定义一个SublayerConnection模块,用于连接子层: ```python class SublayerConnection(nn.Module): def __init__(self, size, dropout=0.1): super(SublayerConnection, self).__init__() self.norm = nn.LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): return x + self.dropout(sublayer(self.norm(x))) ``` 最后,我们可以使用这些模块来构建一个Transformer模型: ```python class TransformerModel(nn.Module): def __init__(self, vocab_size, d_model, n_layers, n_heads, dropout=0.1): super(TransformerModel, self).__init__() self.embedding = nn.Embedding(vocab_size, d_model) self.pos_encoder = PositionalEncoding(d_model, dropout=dropout) self.transformer = Transformer(n_layers, d_model, n_heads, dropout=dropout) self.decoder = nn.Linear(d_model, vocab_size) self.init_weights() def init_weights(self): initrange = 0.1 self.embedding.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, src, mask): src = self.embedding(src) src = self.pos_encoder(src) output = self.transformer(src, mask) output = self.decoder(output) return output ``` 以上就是使用PyTorch实现Transformer模型的实战案例。可以根据具体的需求进行修改和扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裘晴惠Vivianne

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值