RLMRec:利用大型语言模型进行推荐系统的表示学习

项目介绍
RLMRec 是一个由 @Re-bin 实现的 PyTorch 项目,基于 WWW2024 上发表的论文 Representation Learning with Large Language Models for Recommendation。该项目提出了一种模型无关的框架,通过大型语言模型(LLM)增强现有推荐系统的表示学习能力。RLMRec 通过整合表示学习和 LLM,捕捉用户行为和偏好的复杂语义方面,从而提升推荐系统的性能。
项目技术分析
RLMRec 的核心技术包括:
- 辅助文本信号的整合:通过整合辅助文本信号,RLMRec 能够更好地理解用户和物品的语义信息。
- 用户/物品画像生成:利用 LLM 生成高质量的用户和物品画像,这些画像能够准确描述用户偏好和物品特性。
- 跨视图对齐框架:通过跨视图对齐框架,RLMRec 将 LLM 的语义空间与协同关系信号的表示空间对齐,从而提升推荐系统的准确性。
项目及技术应用场景
RLMRec 适用于以下场景:
- 电子商务推荐:在电子商务平台上,RLMRec 可以帮助生成更精准的用户画像和物品描述,从而提升推荐系统的准确性。
- 社交媒体推荐:在社交媒体平台上,RLMRec 可以通过分析用户行为和偏好,生成个性化的内容推荐。
- 内容推荐系统:在新闻、视频等内容推荐系统中,RLMRec 可以帮助生成更符合用户兴趣的内容推荐。
项目特点
- 模型无关性:RLMRec 是一个模型无关的框架,可以与多种现有的推荐系统模型结合使用。
- 高质量画像生成:利用 LLM 生成的高质量用户和物品画像,能够更准确地描述用户偏好和物品特性。
- 跨视图对齐:通过跨视图对齐框架,RLMRec 能够将 LLM 的语义空间与协同关系信号的表示空间对齐,从而提升推荐系统的准确性。
- 易于使用:RLMRec 提供了详细的安装和使用指南,用户可以轻松上手并进行实验。
如何开始
环境配置
首先,通过以下命令快速下载代码:
git clone --depth 1 https://github.com/HKUDS/RLMRec.git
然后,创建并激活 conda 环境:
conda create -y -n rlmrec python=3.9
conda activate rlmrec
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
pip install torch-scatter -f https://data.pyg.org/whl/torch-1.13.1+cu117.html
pip install torch-sparse -f https://data.pyg.org/whl/torch-1.13.1+cu117.html
pip install pyyaml tqdm
数据集
RLMRec 使用了三个公开数据集进行评估:Amazon-book、Yelp 和 Steam。每个用户和物品都有生成的文本描述。你可以通过以下命令下载数据:
cd data/
wget https://archive.org/download/rlmrec_data/data.zip
unzip data.zip
运行示例
以下是评估骨干模型和 RLMRec 的命令示例:
-
骨干模型:
python encoder/train_encoder.py --model {model_name} --dataset {dataset} --cuda 0
-
RLMRec-Con (对比对齐):
python encoder/train_encoder.py --model {model_name}_plus --dataset {dataset} --cuda 0
-
RLMRec-Gen (生成对齐):
python encoder/train_encoder.py --model {model_name}_gene --dataset {dataset} --cuda 0
支持的模型和数据集包括:
model_name
:gccf
,lightgcn
,sgl
,simgcl
,dccf
,autocf
dataset
:amazon
,yelp
,steam
引用
如果你觉得这个项目对你的研究有帮助,请考虑引用我们的论文:
@article{ren2023representation,
title={Representation learning with large language models for recommendation},
author={Ren, Xubin and Wei, Wei and Xia, Lianghao and Su, Lixin and Cheng, Suqi and Wang, Junfeng and Yin, Dawei and Huang, Chao},
journal={arXiv preprint arXiv:2310.15950},
year={2023}
}
感谢你对 RLMRec 项目的关注!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考