DDNM 开源项目使用教程

DDNM 开源项目使用教程

DDNM[ICLR 2023 Oral] Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model项目地址:https://gitcode.com/gh_mirrors/dd/DDNM

项目介绍

DDNM(Denoising Diffusion Null-Space Model)是一个用于图像恢复(Image Restoration, IR)的零样本学习框架。它能够处理包括但不限于图像超分辨率、色彩化、修复、压缩感知和去模糊等任意线性IR问题。DDNM利用预训练的去噪扩散模型作为生成先验,无需额外训练或网络修改,通过在反向扩散过程中仅细化零空间内容,生成满足数据一致性和真实性的多样化结果。

项目快速启动

环境准备

确保你已经安装了Python和必要的依赖库。可以通过以下命令安装:

pip install -r requirements.txt

快速启动示例

以下是一个简单的示例,展示如何使用DDNM进行图像超分辨率:

# 导入必要的模块
from DDNM.guided_diffusion import diffusion

# 设置参数
config = 'celeba_hq.yml'
path_y = 'solvay'
eta = 0.85
deg = 'sr_averagepooling'
deg_scale = 4.0
sigma_y = 0.1

# 运行DDNM
diffusion.main(ni=True, simplified=True, config=config, path_y=path_y, eta=eta, deg=deg, deg_scale=deg_scale, sigma_y=sigma_y, i='demo')

应用案例和最佳实践

旧照片修复

DDNM在旧照片修复方面表现出色。以下是一个旧照片修复的示例命令:

python main.py --ni --simplified --config oldphoto.yml --path_y oldphoto --eta 0.85 --deg "mask_color_sr" --deg_scale 2.0 --sigma_y 0.02 -i demo

自定义图像恢复

你可以使用DDNM恢复你自己降质的图像。DDNM提供了完全的灵活性,让你定义降质操作符和噪声水平。以下是一个自定义图像恢复的示例:

# 自定义降质操作符和噪声水平
custom_deg = 'custom_degradation'
custom_sigma_y = 0.15

# 运行DDNM
diffusion.main(ni=True, simplified=True, config=config, path_y=path_y, eta=eta, deg=custom_deg, deg_scale=deg_scale, sigma_y=custom_sigma_y, i='demo')

典型生态项目

相关研究

  • Wang, Yinhuai, et al. "Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model." ICLR 2023, Notable-Top-25% Paper. 论文链接

开源社区

通过这些资源,你可以更深入地了解DDNM的实现细节和社区动态,进一步优化和扩展其功能。

DDNM[ICLR 2023 Oral] Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model项目地址:https://gitcode.com/gh_mirrors/dd/DDNM

在电子设计自动化(EDA)领域,Verilog HDL 是一种重要的硬件描述语言,广泛应用于数字系统的设计,尤其是在嵌入式系统、FPGA 设计以及数字电路教学中。本文将探讨如何利用 Verilog HDL 实现一个 16×16 点阵字符显示功能。16×16 点阵显示器由 16 行和 16 列的像素组成,共需 256 个二进制位来控制每个像素的亮灭,常用于简单字符或图形显示。 要实现这一功能,首先需要掌握基本的逻辑门(如与门、或门、非门、与非门、或非门等)和组合逻辑电路,以及寄存器和计数器等时序逻辑电路。设计的核心是构建一个模块,该模块接收字符输入(如 ASCII 码),将其转换为 16×16 的二进制位流,进而驱动点阵的 LED 灯。具体而言,该模块包含以下部分:一是输入接口,通常为 8 位的 ASCII 码输入,用于指定要显示的字符;二是内部存储,用于存储字符对应的 16×16 点阵数据,可采用寄存器或分布式 RAM 实现;三是行列驱动逻辑,将点阵数据转换为驱动 LED 矩阵的信号,包含 16 个行输出线和 16 个列使能信号,按特定顺序选通点亮对应 LED;四是时序控制,通过计数器逐行扫描,按顺序控制每行点亮;五是复用逻辑(可选),若点阵支持多颜色或亮度等级,则需额外逻辑控制像素状态。 设计过程中,需用 Verilog 代码描述上述逻辑,并借助仿真工具验证功能,确保能正确将输入字符转换为点阵显示。之后将设计综合到目标 FPGA 架构,通过配置 FPGA 实现硬件功能。实际项目中,“led_lattice”文件可能包含 Verilog 源代码、测试平台文件、配置文件及仿真结果。其中,测试平台用于模拟输入、检查输出,验证设计正确性。掌握 Verilog HDL 实现 16×16 点阵字符显示,涉及硬件描述语言基础、数字逻辑设计、字符编码和 FPGA 编程等多方面知识,是学习
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

齐冠琰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值