BioGPT 开源项目教程
项目地址:https://gitcode.com/gh_mirrors/bi/BioGPT
1. 项目的目录结构及介绍
BioGPT 项目的目录结构如下:
BioGPT/
├── checkpoints/
├── data/
├── src/
│ ├── fairseq/
│ │ ├── models/
│ │ │ └── transformer_lm.py
│ │ └── __init__.py
│ └── __init__.py
├── README.md
├── requirements.txt
└── setup.py
目录结构介绍
- checkpoints/: 存放预训练和微调模型的检查点文件。
- data/: 存放数据集和BPE编码文件。
- src/: 包含项目的源代码,特别是
fairseq
模块,其中transformer_lm.py
是核心的语言模型实现文件。 - README.md: 项目说明文档。
- requirements.txt: 项目依赖的Python包列表。
- setup.py: 用于安装项目的脚本。
2. 项目的启动文件介绍
项目的启动文件主要是 src/fairseq/models/transformer_lm.py
,该文件定义了 Transformer 语言模型的实现。以下是启动文件的关键部分:
from fairseq.models.transformer_lm import TransformerLanguageModel
# 加载预训练模型
m = TransformerLanguageModel.from_pretrained(
"checkpoints/Pre-trained-BioGPT",
"checkpoint.pt",
"data",
tokenizer='moses',
bpe='fastbpe',
bpe_codes="data/bpecodes",
min_len=100,
max_len_b=1024
)
# 将模型移至GPU
m.cuda()
# 编码输入文本
src_tokens = m.encode("COVID-19 is")
# 生成文本
generate = m.generate([src_tokens], beam=5)[0]
output = m.decode(generate[0]["tokens"])
print(output)
启动文件介绍
- TransformerLanguageModel: 这是核心的语言模型类,负责加载预训练模型和进行文本生成。
- from_pretrained: 用于加载预训练模型的方法。
- encode 和 decode: 分别用于编码输入文本和解码生成的文本。
3. 项目的配置文件介绍
项目的配置文件主要是 requirements.txt
和 setup.py
。
requirements.txt
该文件列出了项目运行所需的Python包及其版本:
torch==1.10.0
fairseq==0.10.2
moses==0.0.3
fastbpe==0.1.0
setup.py
该文件用于安装项目及其依赖:
from setuptools import setup, find_packages
setup(
name='BioGPT',
version='0.1.0',
packages=find_packages(),
install_requires=[
'torch==1.10.0',
'fairseq==0.10.2',
'moses==0.0.3',
'fastbpe==0.1.0'
],
include_package_data=True,
zip_safe=False,
python_requires='>=3.6',
)
配置文件介绍
- requirements.txt: 列出了项目运行所需的Python包及其版本。
- setup.py: 用于安装项目及其依赖,定义了项目的名称、版本和依赖包。
以上是 BioGPT 开源项目的教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。