BioGPT 开源项目教程

BioGPT 开源项目教程

项目地址:https://gitcode.com/gh_mirrors/bi/BioGPT

1. 项目的目录结构及介绍

BioGPT 项目的目录结构如下:

BioGPT/
├── checkpoints/
├── data/
├── src/
│   ├── fairseq/
│   │   ├── models/
│   │   │   └── transformer_lm.py
│   │   └── __init__.py
│   └── __init__.py
├── README.md
├── requirements.txt
└── setup.py

目录结构介绍

  • checkpoints/: 存放预训练和微调模型的检查点文件。
  • data/: 存放数据集和BPE编码文件。
  • src/: 包含项目的源代码,特别是 fairseq 模块,其中 transformer_lm.py 是核心的语言模型实现文件。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖的Python包列表。
  • setup.py: 用于安装项目的脚本。

2. 项目的启动文件介绍

项目的启动文件主要是 src/fairseq/models/transformer_lm.py,该文件定义了 Transformer 语言模型的实现。以下是启动文件的关键部分:

from fairseq.models.transformer_lm import TransformerLanguageModel

# 加载预训练模型
m = TransformerLanguageModel.from_pretrained(
    "checkpoints/Pre-trained-BioGPT",
    "checkpoint.pt",
    "data",
    tokenizer='moses',
    bpe='fastbpe',
    bpe_codes="data/bpecodes",
    min_len=100,
    max_len_b=1024
)

# 将模型移至GPU
m.cuda()

# 编码输入文本
src_tokens = m.encode("COVID-19 is")

# 生成文本
generate = m.generate([src_tokens], beam=5)[0]
output = m.decode(generate[0]["tokens"])
print(output)

启动文件介绍

  • TransformerLanguageModel: 这是核心的语言模型类,负责加载预训练模型和进行文本生成。
  • from_pretrained: 用于加载预训练模型的方法。
  • encode 和 decode: 分别用于编码输入文本和解码生成的文本。

3. 项目的配置文件介绍

项目的配置文件主要是 requirements.txtsetup.py

requirements.txt

该文件列出了项目运行所需的Python包及其版本:

torch==1.10.0
fairseq==0.10.2
moses==0.0.3
fastbpe==0.1.0

setup.py

该文件用于安装项目及其依赖:

from setuptools import setup, find_packages

setup(
    name='BioGPT',
    version='0.1.0',
    packages=find_packages(),
    install_requires=[
        'torch==1.10.0',
        'fairseq==0.10.2',
        'moses==0.0.3',
        'fastbpe==0.1.0'
    ],
    include_package_data=True,
    zip_safe=False,
    python_requires='>=3.6',
)

配置文件介绍

  • requirements.txt: 列出了项目运行所需的Python包及其版本。
  • setup.py: 用于安装项目及其依赖,定义了项目的名称、版本和依赖包。

以上是 BioGPT 开源项目的教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。

BioGPT BioGPT 项目地址: https://gitcode.com/gh_mirrors/bi/BioGPT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俞予舒Fleming

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值