LLM Engine 开源项目教程
llm-engineScale LLM Engine public repository项目地址:https://gitcode.com/gh_mirrors/ll/llm-engine
项目介绍
LLM Engine 是一个开源项目,旨在为大规模语言模型(LLMs)提供便捷的微调和部署服务。该项目由 Scale AI 开发,支持用户通过 Scale 的托管服务或使用 Helm 图表在自己的基础设施上运行模型推理和微调。LLM Engine 提供了一个 Python 库、CLI 和 Helm 图表,使用户能够轻松地服务和微调基础模型,无论是使用 Scale 的托管基础设施还是在自己的云上进行。
项目快速启动
安装
首先,通过 pip 安装 LLM Engine:
pip install scale-llm-engine
配置 API 密钥
在 Scale Spellbook 上创建账户并获取 API 密钥。将 API 密钥设置为环境变量:
export SCALE_API_KEY="[Your API key]"
使用 Python 客户端发送请求
使用以下代码示例发送请求:
from llmengine import Completion
response = Completion.create(
model="falcon-7b-instruct",
prompt="I'm opening a pancake restaurant that specializes in unique pancake shapes, colors and flavors. List 3 quirky names I could name my restaurant.",
max_new_tokens=100,
temperature=0.2
)
print(response.output_text)
应用案例和最佳实践
应用案例
LLM Engine 可以用于各种自然语言处理任务,如文本生成、摘要、翻译等。例如,可以使用 LLM Engine 为新开业的餐厅生成创意名称,或者为营销活动生成吸引人的文案。
最佳实践
- 模型选择:根据具体任务选择合适的模型,例如,对于需要高度创造性的任务,可以选择具有较高温度参数的模型。
- 成本优化:利用 LLM Engine 的自动缩放功能,在模型不使用时将其缩放至零,以节省成本。
- 持续更新:随着新模型的发布和新技术的出现,定期更新和微调模型,以保持最佳性能。
典型生态项目
LLM Engine 可以与其他开源项目结合使用,以构建更复杂的应用。例如:
- Hugging Face Transformers:用于加载和预处理各种预训练模型。
- Ray:用于分布式计算,提高模型训练和推理的效率。
- MLflow:用于模型管理和实验跟踪,方便模型版本控制和比较。
通过这些生态项目的结合,可以构建一个强大的机器学习工作流,从数据预处理到模型部署,实现端到端的自动化。
llm-engineScale LLM Engine public repository项目地址:https://gitcode.com/gh_mirrors/ll/llm-engine