Numba 优化编译器快速入门教程

Numba 优化编译器快速入门教程

numbanumba/numba: Numba 是一个用于 Python 的 Just-In-Time (JIT) 编译器,可以用于加速 Python 代码的执行,支持多种 CPU 和 GPU 架构,如 x86,ARM,CUDA 等。项目地址:https://gitcode.com/gh_mirrors/nu/numba

1. 项目目录结构及介绍

在Numba的GitHub仓库中,项目的主要目录结构如下:

.
├── CHANGELOG.md       # 更新日志
├── CONTRIBUTING.md    # 贡献指南
├── LICENSE             # 许可证文件
├── README.md           # 项目简介
├── benchmarks          # 性能基准测试
├── doc                 # 文档源码和构建脚本
├── examples            # 示例代码
└── numba                # 源代码包
   ├── __init__.py      # 初始化模块
   └── ...               # 其他模块(如:dispatcher, compiler等)
  • CHANGELOG.md:记录每次版本更新的内容。
  • CONTRIBUTING.md:指导如何贡献代码或文档到项目。
  • LICENSE:项目使用的许可证,这里是BSD-2-Clause。
  • README.md:简要介绍Numba和其特性。
  • benchmarks:性能测试的代码。
  • doc:项目的文档源代码和构建工具。
  • examples:包含示例代码以展示Numba的使用。
  • numba:核心库的源代码,包括各种模块和功能实现。

2. 项目启动文件介绍

Numba作为一个Python库,没有传统意义上的“启动文件”。通常,用户通过导入numba模块来使用它。例如,在一个Python脚本中:

import numba
from numba import jit

@jit(nopython=True)
def add_one(a):
    return a + 1

result = add_one(10)
print(result)

这里add_one函数是使用@jit装饰器编译的,这是Numba的核心功能之一。

3. 项目的配置文件介绍

Numba并不使用特定的配置文件,但可以通过环境变量来调整行为。一些常用的环境变量包括:

  • NUMBA_DISABLE_JIT:如果设置为非零值,则禁用JIT编译。
  • NUMBA_CACHE_DIR:指定Numba编译后的缓存位置。
  • NUMBA_THREADS:设定Numba运行时使用的线程数。

这些环境变量可以在运行Python之前通过shell命令设置,或者在Python程序内部使用os.environ修改:

export NUMBA_DISABLE_JIT=1

import os
os.environ['NUMBA_DISABLE_JIT'] = '1'

请注意,大多数Numba的设置可以通过在使用Numba时调用相关的API接口来完成,而不是通过配置文件。具体的用法可以参考Numba的官方文档。

更多关于Numba的详细信息和使用方法,请访问 Numba的在线文档

numbanumba/numba: Numba 是一个用于 Python 的 Just-In-Time (JIT) 编译器,可以用于加速 Python 代码的执行,支持多种 CPU 和 GPU 架构,如 x86,ARM,CUDA 等。项目地址:https://gitcode.com/gh_mirrors/nu/numba

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柏珂卿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值