BlenderNeRF 使用教程
项目介绍
BlenderNeRF 是一个在 Blender 中创建合成 NeRF(Neural Radiance Fields)和 Gaussian Splatting 数据集的插件。无论是视觉特效艺术家、研究人员还是图形爱好者,BlenderNeRF 都提供了最简单和最快速的方式来创建这些数据集。该项目由 Maxime Raafat、Merlin Nimier-David 和 Nicholas Sharp 共同开发,完全使用 Python 编写。
项目快速启动
安装
-
克隆项目仓库:
git clone https://github.com/maximeraafat/BlenderNeRF.git
-
在 Blender 中安装插件:
- 打开 Blender。
- 进入
编辑
->偏好设置
->插件
->安装
。 - 选择
blender_nerf_operator.py
文件并安装。
使用
- 在 Blender 中启用插件后,创建一个新的场景。
- 添加
BlenderNeRF Sphere
和BlenderNeRF Camera
对象。 - 设置训练帧数,并从场景开始帧开始捕捉训练帧。
# 示例代码:在 Blender 中创建 BlenderNeRF 对象
import bpy
# 创建 BlenderNeRF Sphere
bpy.ops.object.add(type='EMPTY', name='BlenderNeRF Sphere')
# 创建 BlenderNeRF Camera
bpy.ops.object.camera_add(name='BlenderNeRF Camera')
应用案例和最佳实践
应用案例
BlenderNeRF 可以用于创建高质量的合成数据集,适用于以下场景:
- 视觉特效制作
- 计算机视觉研究
- 图形学实验
最佳实践
- 使用 50 到 150 张图像进行训练。
- 测试视图不应与训练视图偏离太多。
- 避免场景中的运动模糊或模糊。
典型生态项目
Tracky
Tracky 是一个由 Shopify 开发的开源 iOS 应用,用于从真实世界相机导入运动跟踪数据。它可以与 BlenderNeRF 结合使用,以提高 NeRF 重建的质量。
Instant NGP
Instant NGP 是 NVIDIA 提供的一个工具,用于训练 NeRF 模型。BlenderNeRF 可以与 Instant NGP 结合使用,以获得最佳的训练效果。
通过以上教程,您可以快速上手并使用 BlenderNeRF 创建高质量的合成数据集。希望您在使用过程中获得愉快的体验!