利用Blender合成多视角图像For Nerf

.英伟达Instant Nerf简介

英伟达利用哈希编码将原版Nerf(neural radiance fields)神经辐射场长达数天的训练时间缩短到秒级,而且前向渲染达到了实时的程度,属于目前利用神经辐射场进行新视角合成相关研究中的STOA。因此笔者在Ubuntu中对其进行了复现测试。关于Instant Nerf的环境配置参阅官方Github介绍:https://github.com/NVlabs/instant-ngp,有非常详细的安装运行步骤。

配置完Instant Nerf后,利用官方数据(乐高)进行测试,下面的图片展示了原始数据集+相机旋转平移矩阵的样例。

乐高数据集的特性介绍如下:

1.每个视角图片中提前做了前景目标分割处理,只保留了乐高所在前景区域,其他为透明色;

2.Instant Nerf中使用的transform_matrix 是相机坐标系 to 世界坐标系 的旋转平移矩阵,与传统相机标定用的外参矩阵相反,二者互为逆矩阵&#

  • 8
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
根据引用中提到的,本文使用了NeRF提供的synthetic数据集中的lego模型进行稠密重建,其中包含了lego模型的几张图片。NeRF是一种神经辐射场方法,用于进行视图合成和三维场景重建。 如果你想获取更多关于nerfblender数据的信息,我建议你下载引用中分享的Blender工程和源码,根据你的需求进行验证和替换目标物体。这样你可以得到利用Instant Nerf生成的三维重构结果与真实值(GT)的比较。你也可以尝试将不明物体的STL文件导入到Blender中进行处理。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [COLMAP利用已知相机内外参重建NeRFblender模型](https://blog.csdn.net/qq_38677322/article/details/126269726)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [利用Blender合成视角图像For Nerf](https://blog.csdn.net/weixin_42317727/article/details/126770363)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值