ONNX2Caffe:将ONNX模型转换为Caffe模型的工具教程
项目地址:https://gitcode.com/gh_mirrors/on/onnx2caffe
项目概述
ONNX2Caffe 是一个开源项目,旨在提供一个简便的解决方案,用于将基于ONNX(开放神经网络交换格式)的模型转换成Caffe模型。这个项目对于那些想要在Caffe框架下利用ONNX模型的开发者来说极为有用。接下来,我们将深入解析该项目的结构、启动机制以及配置方法。
1. 项目目录结构及介绍
以下是ONNX2Caffe的主要目录结构及其简要说明:
onnx2caffe/
├── caffe.proto # Caffe协议缓冲文件,定义了Caffe模型的数据结构。
├── convert.py # 主要脚本,执行从ONNX到Caffe的模型转换。
├── example # 示例目录,包含了输入ONNX模型的例子和预期输出的Caffe prototxt。
│ └── mnist # 具体示例子目录,如MNIST模型的转换案例。
├── LICENSE.txt # 许可证文件。
├── README.md # 项目说明文档。
└── setup.py # Python包安装脚本,用于设置项目环境。
- convert.py 是核心脚本,用户主要通过调用此脚本完成模型转换。
- example/ 目录提供了如何使用该工具的具体实例。
- caffe.proto 文件是关键,它帮助理解并构建Caffe模型结构。
2. 项目启动文件介绍
主启动文件:convert.py
这个脚本负责整个模型转换的过程。使用时,您需指定ONNX模型文件路径以及希望输出的Caffe模型文件路径。基本使用方式如下所示:
python convert.py --onnx <ONNX模型路径> --prototxt <输出的Caffe prototxt路径> --caffemodel <输出的Caffe模型权重路径>
通过命令行参数,您可以轻松地控制输入与输出,实现模型的无缝转换。
3. 项目的配置文件介绍
ONNX2Caffe项目本身并不直接依赖于复杂的外部配置文件。转换过程主要是通过命令行参数来定制的。然而,涉及到的配置性调整通常是在调用convert.py
时通过参数完成,如上述命令所示。尽管如此,在进行特定模型的转换时,用户可能需要对ONNX或Caffe模型的初始定义(如.proto
文件中的网络定义)进行手工调整,但这不属于项目直接提供的配置范畴。
总结而言,ONNX2Caffe项目以简洁的目录结构和单一的主脚本为主,重点在于通过简单的命令行交互实现模型格式的转换,而不涉及繁杂的配置文件管理。通过理解和运用这些基础元素,用户可以高效地在不同深度学习框架间迁移模型。
onnx2caffe pytorch to caffe by onnx 项目地址: https://gitcode.com/gh_mirrors/on/onnx2caffe