使用OpenAI Whisper的说话人识别管道

使用OpenAI Whisper的说话人识别管道

whisper-diarizationAutomatic Speech Recognition with Speaker Diarization based on OpenAI Whisper项目地址:https://gitcode.com/gh_mirrors/wh/whisper-diarization

项目简介

Speaker Diarization Using OpenAI Whisper是一个基于OpenAI Whisper的强大工具,用于识别音频文件中不同说话人的片段。通过整合Whisper自动语音识别(ASR)技术和Voice Activity Detection(VAD)、Speaker Embedding,本项目能够精确地定位每句话的说话者,即使在多说话人环境中也能有出色表现。感谢@m-bain提供的批处理Whisper推理和@mu4farooqi的标点符号对齐算法,使得这个管道功能更加完善。

drawing如果这个项目对你有所帮助,请在GitHub上点赞支持!

技术剖析

该管道首先从音频中提取人声以提高说话人嵌入的准确性,然后使用Whisper进行转录。接着,使用WhisperX进行时间戳校正和平移对齐,减少因时间差导致的错误。随后,MarbleNet实现VAD并排除静音部分,TitaNet则用来提取说话人特征,最后结合时间戳确定每个词的说话者,并利用标点模型对时间进行微调,确保准确度。

应用场景

无论是在会议记录、播客分析、电话对话分割或是多角色的音频内容整理等场合,Speaker Diarization Using OpenAI Whisper都能大显身手。它能帮助你快速高效地将多说话人音频拆分成独立的部分,便于后续的分析和处理。

项目特点

  • 集成先进技术:结合Whisper的ASR、VAD以及Speaker Embedding技术,提供全面的说话人识别解决方案。
  • 易用性:只需一行命令即可对音频文件进行处理,且提供多个可选参数以适应不同的需求。
  • 并行处理:对于资源充足的系统,提供并行处理选项,提高了处理效率。
  • 语言选择:支持手动指定语言,提升在语言检测失败情况下的性能。

安装与使用

首先确保安装了PyTorchFFmpegCython,之后按照以下步骤安装依赖:

pip install cython torch

pip install torch
sudo apt update && sudo apt install cython3

安装FFmpeg:

# Ubuntu 或 Debian
sudo apt update && sudo apt install ffmpeg

# Arch Linux
sudo pacman -S ffmpeg

# MacOS(Homebrew)
brew install ffmpeg

# Windows(Chocolatey)
choco install ffmpeg

# Windows(Scoop)
scoop install ffmpeg

最后,运行pip install -r requirements.txt来安装剩余的依赖。要处理音频文件,只需执行:

python diarize.py -a AUDIO_FILE_NAME

或者如果你的系统有足够的GPU内存,可以尝试使用diarize_parallel.py进行并行处理。

未来计划

当前项目正在不断优化中,未来可能的改进包括处理重叠说话人的策略,以及增加最大句子长度限制等功能。

致谢

特别感谢@adamjonas对此项目的支持,以及OpenAI的Whisper、Faster Whisper、Nvidia NeMo和Facebook的Demucs的优秀工作,这些都为该项目的发展奠定了坚实基础。

如有任何问题或建议,欢迎提交issue,我们非常期待你的反馈!

whisper-diarizationAutomatic Speech Recognition with Speaker Diarization based on OpenAI Whisper项目地址:https://gitcode.com/gh_mirrors/wh/whisper-diarization

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏玥隽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值