学习型索引库 - Learned Indexes 实践指南

学习型索引库 - Learned Indexes 实践指南

项目地址:https://gitcode.com/gh_mirrors/le/Learned-Indexes

项目介绍

Learned Indexes 是一个由 Yangjufo 开发的开源项目,它颠覆了传统数据库索引的设计思路,利用机器学习模型来构建索引结构。这一创新理念旨在提高数据访问效率,减少存储开销,并优化查询性能。通过将复杂的数据访问模式映射到机器学习预测模型上,Learned Indexes 能够根据数据分布特性定制化索引,从而在某些场景下显著超越传统的B树等索引方法。

项目快速启动

环境准备

首先确保你的开发环境中安装了必要的工具,如 Git 和 Python(建议版本为 3.8 或更高)。你也需要安装项目依赖,可以通过以下命令完成:

git clone https://github.com/yangjufo/Learned-Indexes.git
cd Learned-Indexes
pip install -r requirements.txt

运行示例

项目中包含了快速入门的示例,让我们通过简单的步骤体验 Learned Indexes 的魅力:

from learned_indexes import LearnedIndex

# 假设我们有一组键值对数据
keys = [i for i in range(100000)]
values = [f"data_{i}" for i in keys]

# 创建并训练 Learned Index
index = LearnedIndex(keys)
index.train()

# 使用索引进行查询
query_key = 56789
position = index.query(query_key)
print(f"找到数据的位置: {position}, 对应值: {values[position]}")

这段代码展示了如何创建一个 Learned Index,训练它,并执行一次查询。请注意,实际应用中需要根据具体的数据集调整训练过程。

应用案例和最佳实践

Learned Indexes 特别适合于数据分布不均匀或具有复杂模式的场景。例如,在大数据分析、实时检索系统以及具有高度可变性数据的关键业务应用中,它们能够提供更高效的索引策略,从而减少查询延迟。

最佳实践

  1. 评估数据分布:在应用 Learned Indexes 之前,深入理解数据的分布对于优化索引性能至关重要。
  2. 监控与调整:持续监控索引的表现,并根据数据变化适时重新训练或调整模型参数。
  3. 混合使用:在一些情况下,结合传统索引与 Learned Indexes 可能达到更好的效果。

典型生态项目

虽然该项目本身是独立的,但其理念和技术启发了一系列围绕数据处理与数据库优化的研究与实践。例如,Google的Bigtable及Spanner团队也探索了类似的概念,推动了数据库领域向更加智能、自适应的方向发展。社区中的一些其他项目也开始尝试整合机器学习算法以改善索引机制,尽管直接相关的“典型生态项目”可能需进一步探索,但Learned Indexes的理念正逐步被更多数据库和数据管理解决方案采纳和扩展。


本文档提供了关于 Learned Indexes 开源项目的简要介绍、快速启动指南、应用实例及最佳实践概览,希望能够帮助开发者快速理解和应用这一创新技术。

Learned-Indexes Implementation of BTree part for paper 'The Case for Learned Index Structures' Learned-Indexes 项目地址: https://gitcode.com/gh_mirrors/le/Learned-Indexes

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

## A C++11 implementation of the B-Tree part of "The Case for Learned Index Structures" A research **proof of concept** that implements the B-Tree section of [The Case for Learned Index Structures](https://arxiv.org/pdf/1712.01208.pdf) paper in C++. The general design is to have a single lookup structure that you can parameterize with a KeyType and a ValueType, and an overflow list that keeps new inserts until you retrain. There is a value in the constructor of the RMI that triggers a retrain when the overflow array reaches a certain size. The basic API: ```c++ // [first/second]StageParams are network parameters int maxAllowedError = 256; int maxBufferBeforeRetrain = 10001; auto modelIndex = RecursiveModelIndex recursiveModelIndex(firstStageParams, secondStageParams, maxAllowedError, maxBufferBeforeRetrain); for (int ii = 0; ii < 10000; ++ii) { modelIndex.insert(ii, ii * 2); } // Since we still have one more insert before retraining, retrain before searching... modelIndex.train(); auto result = modelIndex.find(5); if (result) { std::cout << "Yay! We got: " << result.get().first << ", " << result.get().second << std::endl; } else { std::cout << "Value not found." << std::endl; // This shouldn't happen in the above usage... } ``` See [src/main.cpp](src/main.cpp) for a usage example where it stores scaled log normal data. ### Dependencies - [nn_cpp](https://github.com/bcaine/nn_cpp) - Eigen based minimalistic C++ Neural Network library - [cpp-btree](https://code.google.com/archive/p/cpp-btree/) - A fast C++ implementation of a B+ Tree ### TODO: - Lots of code cleanup - Profiling of where the slowdowns are. On small tests, the cpp_btree lib beats it by 10-100x - Eigen::TensorFixed in nn_cpp would definitel
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

史琼鸽Power

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值