AG2项目教程:安装与使用
1. 项目的目录结构及介绍
AG2项目的目录结构如下:
AG2/
├── .devcontainer/
├── .github/
├── autogen/
├── license_original/
├── notebook/
├── scripts/
├── test/
├── website/
├── .coveragerc
├── .gitattributes
├── .gitignore
├── .muffet-excluded-links.txt
├── .pre-commit-config.yaml
├── CITATION.cff
├── LICENSE
├── MAINTAINERS.md
├── NOTICE.md
├── OAI_CONFIG_LIST_sample
├── README.md
├── TRANSPARENCY_FAQS.md
├── announcements.md
├── azure-pipelines.yml
├── codecov.yml
├── pyproject.toml
├── setup.jinja
├── setup_ag2.py
├── setup_autogen.py
.devcontainer/
:包含开发容器配置。.github/
:包含GitHub操作和CI/CD配置。autogen/
:AG2的核心代码库。license_original/
:原始的许可文件。notebook/
:包含用于演示的Jupyter笔记本。scripts/
:包含项目维护脚本。test/
:包含单元测试代码。website/
:项目网站相关文件。- 其他文件和目录主要包括配置文件、文档和项目维护相关文件。
2. 项目的启动文件介绍
AG2项目的启动通常是通过创建一个Python脚本或Jupyter Notebook来进行的。以下是一个简单的启动示例:
from autogen import AssistantAgent, UserProxyAgent, LLMConfig
# 加载LLM配置
llm_config = LLMConfig.from_json(path="OAI_CONFIG_LIST")
# 创建助手代理
with llm_config:
assistant = AssistantAgent(name="assistant")
user_proxy = UserProxyAgent(name="user_proxy", code_execution_config={"work_dir": "coding", "use_docker": False})
# 初始化对话
user_proxy.initiate_chat(assistant, message="Plot a chart of NVDA and TESLA stock price change YTD.")
在这个示例中,我们首先导入了必要的类,然后加载了配置文件。之后,我们创建了两个代理:assistant
和user_proxy
。最后,我们通过initiate_chat
方法启动了代理之间的对话。
3. 项目的配置文件介绍
AG2项目的配置文件主要是OAI_CONFIG_LIST
,这个文件用于存储与大型语言模型(LLMs)相关的API密钥和其他配置信息。以下是一个配置文件的示例:
[
{
"model": "gpt-4o",
"api_key": "<your OpenAI API key here>"
}
]
在这个文件中,你可以添加多个模型配置,每个配置都包含一个模型类型和一个API密钥。这个文件应该被保存在安全的地方,并且不应该被提交到版本控制系统中。
通过上述步骤,你可以开始使用AG2项目,并根据需要进行扩展和自定义。