EDA-AI:深度学习在电子设计自动化中的应用

EDA-AI:深度学习在电子设计自动化中的应用

EDA-AI Implementation of NeurIPS 2021 paper "On Joint Learning for Solving Placement and Routing in Chip Design" & NeurIPS 2022 paper "The Policy-gradient Placement and Generative Routing Neural Networks for Chip Design". EDA-AI 项目地址: https://gitcode.com/gh_mirrors/ed/EDA-AI

1. 项目基础介绍和主要编程语言

EDA-AI 是由上海交通大学 Thinklab 实验室开发的一个开源项目,专注于将深度学习技术应用于电子设计自动化(EDA)领域。该项目旨在通过神经网络优化芯片设计中的布局布线问题,提高设计效率和性能。项目主要使用 Python、C++ 和 C 语言进行开发,其中 Python 用于搭建和训练深度学习模型,C++ 和 C 用于实现算法和优化性能。

2. 项目核心功能

  • DeepPlace:实现了 NeurIPS 2021 论文中的 "On Joint Learning for Solving Placement and Routing in Chip Design",通过深度学习技术联合解决芯片设计中的布局和布线问题。
  • PRNet:根据 NeurIPS 2022 论文 "The policy-gradient placement and generative routing neural networks for chip design",实现了一种基于策略梯度的布局和生成式布线神经网络。
  • HubRouter:遵循 NeurIPS 2023 论文 "HubRouter: Learning Global Routing via Hub Generation and Pin-hub Connection",学习全局布线通过生成 Hub 和连接 Pin-Hub 的方法。
  • PreRoutGNN:根据 AAAI 2024 论文 "PreRoutGNN for Timing Prediction with Order Preserving Partition: Global Circuit Pre-training Local Delay Learning and Attentional Cell Modeling",实现了一种用于时序预测的图神经网络。
  • FlexPlanner:依据 NeurIPS 2024 论文 "FlexPlanner: Flexible 3D Floorplanning via Deep Reinforcement Learning in Hybrid Action Space with Multi-Modality Representation",实现了一种基于深度强化学习的灵活三维布局规划方法。

3. 项目最近更新的功能

最近项目的更新主要集中在进一步完善和优化已有的算法模型,并增加了以下新功能:

  • 模型性能提升:对 DeepPlace 和 PRNet 的模型进行了优化,提高了布局布线的效率和准确性。
  • 新算法实现:增加了 HubRouter 和 PreRoutGNN 的实现,为全局布线和时序预测提供了新的解决方案。
  • 3D 布局支持:FlexPlanner 的加入使得项目具备了处理三维布局规划的能力,适应了现代芯片设计的复杂需求。

通过这些更新,EDA-AI 不断地推动着 EDA 领域的技术进步,为芯片设计人员提供了强大的工具支持。

EDA-AI Implementation of NeurIPS 2021 paper "On Joint Learning for Solving Placement and Routing in Chip Design" & NeurIPS 2022 paper "The Policy-gradient Placement and Generative Routing Neural Networks for Chip Design". EDA-AI 项目地址: https://gitcode.com/gh_mirrors/ed/EDA-AI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宁乐钧Gwendolyn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值