EDA-AI:深度学习在电子设计自动化中的应用
1. 项目基础介绍和主要编程语言
EDA-AI
是由上海交通大学 Thinklab 实验室开发的一个开源项目,专注于将深度学习技术应用于电子设计自动化(EDA)领域。该项目旨在通过神经网络优化芯片设计中的布局布线问题,提高设计效率和性能。项目主要使用 Python、C++ 和 C 语言进行开发,其中 Python 用于搭建和训练深度学习模型,C++ 和 C 用于实现算法和优化性能。
2. 项目核心功能
- DeepPlace:实现了 NeurIPS 2021 论文中的 "On Joint Learning for Solving Placement and Routing in Chip Design",通过深度学习技术联合解决芯片设计中的布局和布线问题。
- PRNet:根据 NeurIPS 2022 论文 "The policy-gradient placement and generative routing neural networks for chip design",实现了一种基于策略梯度的布局和生成式布线神经网络。
- HubRouter:遵循 NeurIPS 2023 论文 "HubRouter: Learning Global Routing via Hub Generation and Pin-hub Connection",学习全局布线通过生成 Hub 和连接 Pin-Hub 的方法。
- PreRoutGNN:根据 AAAI 2024 论文 "PreRoutGNN for Timing Prediction with Order Preserving Partition: Global Circuit Pre-training Local Delay Learning and Attentional Cell Modeling",实现了一种用于时序预测的图神经网络。
- FlexPlanner:依据 NeurIPS 2024 论文 "FlexPlanner: Flexible 3D Floorplanning via Deep Reinforcement Learning in Hybrid Action Space with Multi-Modality Representation",实现了一种基于深度强化学习的灵活三维布局规划方法。
3. 项目最近更新的功能
最近项目的更新主要集中在进一步完善和优化已有的算法模型,并增加了以下新功能:
- 模型性能提升:对 DeepPlace 和 PRNet 的模型进行了优化,提高了布局布线的效率和准确性。
- 新算法实现:增加了 HubRouter 和 PreRoutGNN 的实现,为全局布线和时序预测提供了新的解决方案。
- 3D 布局支持:FlexPlanner 的加入使得项目具备了处理三维布局规划的能力,适应了现代芯片设计的复杂需求。
通过这些更新,EDA-AI
不断地推动着 EDA 领域的技术进步,为芯片设计人员提供了强大的工具支持。