PESTO:基于机器学习的快速强大音高估计器
pestoSelf-supervised learning for fast pitch estimation项目地址:https://gitcode.com/gh_mirrors/pe/pesto
项目介绍
PESTO(Pitch Estimation with Self-supervised Transposition-equivariant Objective)是一个基于机器学习的音高估计器,其核心算法在ISMIR 2023会议上被接受并发表。该项目提供了一个快速且强大的音高估计工具,特别适用于需要快速音高分析的应用场景。
项目技术分析
PESTO项目采用了PyTorch框架,并依赖于numpy
、torchaudio等库。其核心模型轻量且高效,能够在不依赖GPU资源的情况下实现快速的音高估计。此外,PESTO支持多种输出格式,包括CSV、NPZ和PNG,便于用户根据需求选择。
项目及技术应用场景
PESTO适用于多种音频处理场景,特别是在需要快速音高估计的场合,如音乐信息检索、音频分析、音乐生成等领域。其高效的性能和灵活的输出格式使其成为研究人员和开发者的理想选择。
项目特点
- 快速高效:PESTO在音高估计速度上远超同类工具,能够在13秒内完成2分51秒音频文件的音高估计,比实时处理速度快12倍。
- 轻量级模型:相较于其他复杂的音高估计模型,PESTO模型轻量,易于部署和使用。
- 多格式输出:支持CSV、NPZ和PNG等多种输出格式,满足不同用户的需求。
- 易于集成:提供命令行接口和Python API,方便用户在不同环境中使用。
- GPU加速:支持GPU加速,进一步提高处理速度,适用于大规模音频文件的处理。
通过PESTO,用户可以轻松实现音频文件的快速音高估计,无论是进行音乐分析还是开发相关应用,PESTO都是一个值得信赖的选择。立即尝试,体验其带来的高效与便捷!
# PESTO:基于机器学习的快速强大音高估计器
## 项目介绍
PESTO(Pitch Estimation with Self-supervised Transposition-equivariant Objective)是一个基于机器学习的音高估计器,其核心算法在[ISMIR 2023](https://ismir2023.ismir.net/)会议上被接受并发表。该项目提供了一个快速且强大的音高估计工具,特别适用于需要快速音高分析的应用场景。
## 项目技术分析
PESTO项目采用了[PyTorch](https://pytorch.org/)框架,并依赖于`numpy`、[torchaudio](https://pytorch.org/audio/stable/)等库。其核心模型轻量且高效,能够在不依赖GPU资源的情况下实现快速的音高估计。此外,PESTO支持多种输出格式,包括CSV、NPZ和PNG,便于用户根据需求选择。
## 项目及技术应用场景
PESTO适用于多种音频处理场景,特别是在需要快速音高估计的场合,如音乐信息检索、音频分析、音乐生成等领域。其高效的性能和灵活的输出格式使其成为研究人员和开发者的理想选择。
## 项目特点
1. **快速高效**:PESTO在音高估计速度上远超同类工具,能够在13秒内完成2分51秒音频文件的音高估计,比实时处理速度快12倍。
2. **轻量级模型**:相较于其他复杂的音高估计模型,PESTO模型轻量,易于部署和使用。
3. **多格式输出**:支持CSV、NPZ和PNG等多种输出格式,满足不同用户的需求。
4. **易于集成**:提供命令行接口和Python API,方便用户在不同环境中使用。
5. **GPU加速**:支持GPU加速,进一步提高处理速度,适用于大规模音频文件的处理。
通过PESTO,用户可以轻松实现音频文件的快速音高估计,无论是进行音乐分析还是开发相关应用,PESTO都是一个值得信赖的选择。立即尝试,体验其带来的高效与便捷!
pestoSelf-supervised learning for fast pitch estimation项目地址:https://gitcode.com/gh_mirrors/pe/pesto