Unbiased_LambdaMart 项目教程

Unbiased_LambdaMart 项目教程

Unbiased_LambdaMart Code for WWW'19 "Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm", which is based on LightGBM Unbiased_LambdaMart 项目地址: https://gitcode.com/gh_mirrors/un/Unbiased_LambdaMart

1、项目介绍

Unbiased_LambdaMart 是一个基于 LightGBM 的无偏 LambdaMART 算法实现。该项目的主要目标是解决传统 LambdaMART 算法中的位置偏差问题,通过联合估计点击位置和未点击位置的偏差,学习一个无偏的排序模型。该项目的代码和相关数据集可以在 GitHub 仓库 中找到。

2、项目快速启动

2.1 环境准备

在开始之前,请确保你的系统已经安装了以下工具:

  • CMake
  • GCC 或 Clang
  • Python 3.x

2.2 编译 Unbiased_LambdaMart

  1. 克隆项目仓库:

    git clone https://github.com/acbull/Unbiased_LambdaMart.git
    cd Unbiased_LambdaMart
    
  2. 编译 Unbiased_LambdaMart:

    cd Unbias_LightGBM/
    mkdir build
    cd build
    cmake ..
    make -j4
    

2.3 运行示例

编译完成后,可以运行以下命令来执行示例:

cd Unbias_LightGBM
cp ./lightgbm ./examples/lambdarank/
cd ./examples/lambdarank/
./lightgbm config="train.conf"

3、应用案例和最佳实践

3.1 数据集生成

在评估之前,需要生成一个模拟点击数据集。可以使用以下命令生成数据集:

cd evaluation
mkdir test_data
cd scripts
python generate_data.py --click_model=user_browsing_model_0.1_1_4_1.json

3.2 模型评估

生成数据集后,可以运行以下命令来评估模型:

./lightgbm config='train.conf'
./lightgbm config='test.conf'

评估结果将生成在 LightGBM_predict_result.txt 文件中。

4、典型生态项目

4.1 LightGBM

LightGBM 是一个基于梯度提升决策树的高效机器学习框架,广泛应用于各种排序和分类任务。Unbiased_LambdaMart 是基于 LightGBM 的一个扩展,专门用于解决排序任务中的位置偏差问题。

4.2 Unbiased Learning-to-Rank

Unbiased Learning-to-Rank 是一个研究领域,旨在通过减少位置偏差来提高排序模型的性能。Unbiased_LambdaMart 是该领域的一个具体实现,提供了一种无偏的排序算法。

通过以上步骤,你可以快速启动并使用 Unbiased_LambdaMart 项目,并了解其在实际应用中的最佳实践和相关生态项目。

Unbiased_LambdaMart Code for WWW'19 "Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm", which is based on LightGBM Unbiased_LambdaMart 项目地址: https://gitcode.com/gh_mirrors/un/Unbiased_LambdaMart

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咎晓嘉Fenton

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值