点击上方“马蜂窝技术”,关注订阅更多优质内容
马蜂窝信息流推荐系统的目的是给用户推荐更好玩,更有用的内容攻略,该系统通过内容池、召回、排序、重排序几个过程,从海量内容中筛选出用户感兴趣的推荐给用户。
排序是推荐系统中的重要一环,马蜂窝使用基于CTR预估的排序模型,通过学习数据中的知识训练模型,再将内容推荐给用户,形成推荐闭环。
用户在浏览和详细查阅具体内容的时,因视觉注意力具有一定倾向性,即:注意力集中的地方普遍点击率会更高(参考图1b中,注意力热度图),使处于“好位置”的内容获得更多的曝光和点击。这些点击行为不能真实地反映出内容质量和用户喜好,从而会对基于CTR预估的推荐系统造成影响。
综上,位置偏差会给推荐系统带来以下两点问题:
1、用户的点击行为会受到展示位置的影响,处于“好位置”的内容点击率比较高
2、点击率高的内容会在推荐闭环中占据强势地位,挤压其他内容的生存空间
为此,本文将介绍马蜂窝推荐排序系统是如何降低位置偏差带来的影响的。
马蜂窝推荐排序模型是CTR预估模型,它的训练样本是