位置偏差在马蜂窝推荐排序中的实践

本文介绍了马蜂窝推荐系统如何处理位置偏差问题,通过将位置信息作为训练特征,采用逆倾向样本加权等方法,优化CTR预估模型,以提高推荐准确性。实验结果显示,通过调整位置能力在排序模型中的应用,用户点击率和内容曝光得到了显著提升。
摘要由CSDN通过智能技术生成

41dd1a46df47a723c37a9b3817339f3c.gif    点击上方“马蜂窝技术”,关注订阅更多优质内容

a2edb7324d3bc33ce258e54d8f51a8e7.png

马蜂窝信息流推荐系统的目的是给用户推荐更好玩,更有用的内容攻略,该系统通过内容池、召回、排序、重排序几个过程,从海量内容中筛选出用户感兴趣的推荐给用户。

排序是推荐系统中的重要一环,马蜂窝使用基于CTR预估的排序模型,通过学习数据中的知识训练模型,再将内容推荐给用户,形成推荐闭环。

ba6f2a48f5eb992e24c878a4874a01d2.png

用户在浏览和详细查阅具体内容的时,因视觉注意力具有一定倾向性,即:注意力集中的地方普遍点击率会更高(参考图1b中,注意力热度图),使处于“好位置”的内容获得更多的曝光和点击。这些点击行为不能真实地反映出内容质量和用户喜好,从而会对基于CTR预估的推荐系统造成影响。

46d4cacd24487169ed12f292e79fa78f.png

综上,位置偏差会给推荐系统带来以下两点问题:

1、用户的点击行为会受到展示位置的影响,处于“好位置”的内容点击率比较高

2、点击率高的内容会在推荐闭环中占据强势地位,挤压其他内容的生存空间

为此,本文将介绍马蜂窝推荐排序系统是如何降低位置偏差带来的影响的。

8394b963cee8322382c4a1ad86fe86c5.png

47ed3715c55bc05aaf81cf69afff4cd2.png

马蜂窝推荐排序模型是CTR预估模型,它的训练样本是

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值