每个人都来跳舞现在 - PyTorch实现
项目介绍
本项目是伯克利人工智能实验室“Everyone Dance Now”的PyTorch实现版本,它剔除了姿态标准化功能之外的所有核心功能。通过这个工具包,开发者能够将一个人的舞蹈动作迁移至另一个视频中的人物,从而创造出有趣且自然的合成舞蹈视频。项目基于深度学习模型,利用了PyTorch框架,并依赖于TensorFlow(用于姿势估计部分)以及一系列图像处理库。
项目快速启动
环境配置
首先,确保你的开发环境满足以下条件:
- 操作系统: Ubuntu 18.04或16.04
- Python: 3.6
- CUDA: 9.0 或更高
- PyTorch: 0.4.1post2
- 其他必要包: 可以通过运行
pip install -r requirements.txt
快速安装
下载项目及预训练模型
-
克隆项目仓库到本地:
git clone https://github.com/Lotayou/everybody_dance_now_pytorch.git
-
下载并放置必要的预训练模型,例如从指定源下载姿势估计器,并将其放入项目中的相应文件夹。
运行示例
为了测试项目,你需要准备特定的视频数据集,遵循官方说明对数据进行处理,包括视频分割、帧提取、姿势估计等步骤。一旦准备完毕,可以尝试使用提供的脚本来训练模型或直接测试已有的模型。以下是简化的快速启动过程概览:
-
数据预处理后,你可以通过修改相应的脚本路径参数来开始训练过程,例如对于全局生成网络的基础训练:
sh scripts/train_full_512.sh
-
对于测试流程,首先是合成完整视频,然后可能涉及面部增强:
# 合成视频 sh scripts/test_full_512.sh # 面部增强 python face_enhancer/enhance.py
应用案例和最佳实践
该工具被设计用来把一个舞者的动作转移到另一个视频人物上。最佳实践建议使用背景简单、单人表演、持续时间较长且动作基本的视频作为输入,避免强烈光线变化和复杂肢体遮挡,以获得最佳效果。实践中,用户应先用准备好的数据训练模型,随后在新场景下测试模型性能,调整超参数以适应不同类型的舞蹈或视频环境。
典型生态项目
-
everyone-dance-now-reproduce-pytorch [查看]:由不同的团队实现的另一版本,包含了更详细的正常化和面部增强功能。
-
相关研究与应用:此项目启发了许多围绕人体动作转换的研究工作,不仅限于舞蹈领域,也扩展到了虚拟现实、电影特效和个性化数字内容创作等领域。
在实际应用中,开发者可以根据自己的需求,结合这些生态项目的特点,探索创新的应用方式,推动视频编辑和生成艺术的边界。