STSU项目安装与使用教程
1. 项目目录结构及介绍
欢迎来到STSU项目,这是一个专注于从车载图像中进行结构化鸟瞰交通场景理解的开源项目。该项目利用深度学习技术,特别是借鉴了DETR的架构,实现了对车道线和动态物体的结构化感知。以下是项目的主要目录结构和各部分简要说明:
├── README.md # 项目简介和快速入门指南
├── data # 存放数据集相关的文件夹,包括预处理后的数据和标签
├── models # 包含模型定义文件,核心算法实现
│ ├── stu_net.py # 主模型定义,实现结构化理解的关键网络结构
├── scripts # 启动脚本和辅助脚本的集合
│ ├── train.sh # 训练模型的shell脚本
│ └── eval.sh # 模型评估脚本
├── utils # 辅助工具函数,如数据加载、预处理等
│ ├── dataset.py # 数据集加载和处理逻辑
│ └── utils.py # 杂项实用函数
├── requirements.txt # 项目依赖列表
└── main.py # 主程序入口,通常用于训练和测试的控制
2. 项目的启动文件介绍
主启动文件:main.py
main.py
是项目的主入口点,它负责初始化模型、加载数据集、配置训练或测试环境,并执行模型的训练或评估过程。通过命令行参数,您可以指定不同的操作模式(例如训练或评估),选择模型的配置,以及设置其他运行时选项。
脚本文件:scripts/train.sh
和 scripts/eval.sh
- train.sh: 这个脚本用于便捷地启动模型的训练过程,它调用
main.py
并传入相应的参数来开始模型训练。 - eval.sh: 相似地,这个脚本用于模型的评估阶段,它也通过调用
main.py
来完成模型在验证集上的性能评估。
3. 项目的配置文件介绍
尽管上述目录结构示例未直接列出一个典型的.yaml
或.json
配置文件路径,对于深度学习项目,配置文件通常是自定义模型参数、优化器设置、数据集路径等的关键。一般情况下,这类配置文件会被放在项目的一个特定位置,比如config
目录下(这里假设目录结构简化,实际可能有所不同):
├── config
│ ├── model_config.yaml # 模型配置,包括网络结构细节和超参数
│ └── train_config.yaml # 训练相关配置,如批次大小、学习率等
model_config.yaml 包含模型架构的具体设定,如层的数量、激活函数类型、输出类别等。 train_config.yaml 则涉及训练流程的配置,包括迭代次数、学习率策略、损失函数的选择等关键设置。
请注意,具体文件名和其内部结构需参照实际项目仓库中的最新文件,以上仅为通用指导。在进行项目开发前,请详细阅读项目README.md
文件,确保获取最新的指令和配置详情。