ComfyUI-Ollama 使用教程
项目地址:https://gitcode.com/gh_mirrors/co/comfyui-ollama
项目介绍
ComfyUI-Ollama 是一个 ComfyUI 扩展,允许用户使用 Ollama 提供的 LLM 模板,如 Gemma Llava(多模态)、Llama2、Llama3 或 Mistral。通过这个扩展,用户可以轻松地将大型语言模型(LLMs)集成到 ComfyUI 工作流中,或者只是实验 GPT。
项目快速启动
安装步骤
-
克隆仓库到 custom_nodes 文件夹:
git clone https://github.com/stavsap/comfyui-ollama.git
-
安装依赖:
pip install -r requirements.txt
-
启动 ComfyUI:
# 启动 ComfyUI
使用步骤
-
添加节点:
- 在 ComfyUI 中,通过 Ollama -> Ollama Image Describer 添加节点。
- 选择合适的模型,如 llava 模型。
-
输入图像:
- 输入需要处理的图像。
-
执行工作流:
- 运行工作流以处理图像并生成文本。
应用案例和最佳实践
案例一:图像描述生成
使用 Ollama Image Describer 节点,输入图像后,可以生成图像的描述文本。这对于需要自动化图像标注的场景非常有用。
案例二:文本生成
使用 OllamaGenerate 节点,输入提示后,可以生成相应的文本。这对于需要自动化文本生成的场景非常有用。
最佳实践
- 选择合适的模型:根据需求选择合适的模型,如多模态模型 llava。
- 优化工作流:根据实际需求优化工作流,提高处理效率。
典型生态项目
ComfyUI
ComfyUI 是一个强大的工作流管理工具,支持多种扩展和插件,可以方便地集成各种 LLM 模型。
Ollama
Ollama 是一个提供大型语言模型(LLMs)的库,支持 GPU 加速,适用于多种操作系统和场景。
Docker
通过 Docker 容器化部署 Ollama,可以方便地在不同环境中运行和部署。
通过以上内容,您可以快速了解和使用 ComfyUI-Ollama 扩展,并将其应用于实际场景中。
comfyui-ollama 项目地址: https://gitcode.com/gh_mirrors/co/comfyui-ollama