Qdrant Python 客户端使用指南

Qdrant Python 客户端使用指南

项目地址:https://gitcode.com/gh_mirrors/qd/qdrant-client

1. 项目介绍

Qdrant 是一个高效的向量搜索引擎,支持快速存储和检索高维向量数据。Qdrant Python 客户端是一个用于与 Qdrant 向量搜索引擎进行交互的 Python 库。该客户端提供了类型定义、同步和异步请求支持,并且可以直接调用 Qdrant 的所有 API 方法。此外,它还提供了一些额外的辅助方法,用于常见的操作,如初始化集合上传等。

2. 项目快速启动

安装

首先,使用 pip 安装 Qdrant Python 客户端:

pip install qdrant-client

初始化客户端

在本地模式下初始化客户端:

from qdrant_client import QdrantClient

client = QdrantClient(":memory:")  # 内存模式
# 或者
client = QdrantClient(path="path/to/db")  # 持久化到磁盘

创建集合

创建一个新的集合:

from qdrant_client.models import Distance, VectorParams

client.create_collection(
    collection_name="my_collection",
    vectors_config=VectorParams(size=100, distance=Distance.COSINE)
)

插入向量

插入向量到集合中:

import numpy as np
from qdrant_client.models import PointStruct

vectors = np.random.rand(100, 100)
client.upsert(
    collection_name="my_collection",
    points=[
        PointStruct(
            id=idx,
            vector=vector.tolist(),
            payload={"color": "red", "rand_number": idx % 10}
        ) for idx, vector in enumerate(vectors)
    ]
)

搜索向量

搜索相似的向量:

query_vector = np.random.rand(100)
hits = client.search(
    collection_name="my_collection",
    query_vector=query_vector,
    limit=5  # 返回最接近的5个点
)

3. 应用案例和最佳实践

应用案例

Qdrant 客户端可以用于各种需要高效向量搜索的场景,例如:

  • 推荐系统:通过向量搜索快速找到与用户兴趣相似的物品。
  • 图像检索:将图像特征向量化后存储在 Qdrant 中,通过向量搜索实现快速图像检索。
  • 文本搜索:将文本转换为向量并存储,通过向量搜索实现语义相似的文本检索。

最佳实践

  • 批量上传:在插入大量向量时,建议使用批量上传方法以提高效率。
  • 过滤条件:在搜索时使用过滤条件可以进一步缩小搜索范围,提高搜索效率。
  • 异步操作:对于大规模数据处理,建议使用异步客户端以提高性能。

4. 典型生态项目

Qdrant 客户端可以与其他开源项目结合使用,构建更强大的应用:

  • Langchain:一个用于构建语言模型的开源库,可以与 Qdrant 结合实现高效的文本向量搜索。
  • Llama Index:一个用于构建知识图谱的开源库,可以与 Qdrant 结合实现高效的实体向量搜索。
  • ONNX Runtime:一个用于加速机器学习推理的开源库,可以与 Qdrant 结合实现高效的向量嵌入生成。

通过结合这些生态项目,可以构建出更加复杂和高效的向量搜索应用。

qdrant-client Python client for Qdrant vector search engine qdrant-client 项目地址: https://gitcode.com/gh_mirrors/qd/qdrant-client

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魏纯漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值