Qdrant Python 客户端使用指南
项目地址:https://gitcode.com/gh_mirrors/qd/qdrant-client
1. 项目介绍
Qdrant 是一个高效的向量搜索引擎,支持快速存储和检索高维向量数据。Qdrant Python 客户端是一个用于与 Qdrant 向量搜索引擎进行交互的 Python 库。该客户端提供了类型定义、同步和异步请求支持,并且可以直接调用 Qdrant 的所有 API 方法。此外,它还提供了一些额外的辅助方法,用于常见的操作,如初始化集合上传等。
2. 项目快速启动
安装
首先,使用 pip 安装 Qdrant Python 客户端:
pip install qdrant-client
初始化客户端
在本地模式下初始化客户端:
from qdrant_client import QdrantClient
client = QdrantClient(":memory:") # 内存模式
# 或者
client = QdrantClient(path="path/to/db") # 持久化到磁盘
创建集合
创建一个新的集合:
from qdrant_client.models import Distance, VectorParams
client.create_collection(
collection_name="my_collection",
vectors_config=VectorParams(size=100, distance=Distance.COSINE)
)
插入向量
插入向量到集合中:
import numpy as np
from qdrant_client.models import PointStruct
vectors = np.random.rand(100, 100)
client.upsert(
collection_name="my_collection",
points=[
PointStruct(
id=idx,
vector=vector.tolist(),
payload={"color": "red", "rand_number": idx % 10}
) for idx, vector in enumerate(vectors)
]
)
搜索向量
搜索相似的向量:
query_vector = np.random.rand(100)
hits = client.search(
collection_name="my_collection",
query_vector=query_vector,
limit=5 # 返回最接近的5个点
)
3. 应用案例和最佳实践
应用案例
Qdrant 客户端可以用于各种需要高效向量搜索的场景,例如:
- 推荐系统:通过向量搜索快速找到与用户兴趣相似的物品。
- 图像检索:将图像特征向量化后存储在 Qdrant 中,通过向量搜索实现快速图像检索。
- 文本搜索:将文本转换为向量并存储,通过向量搜索实现语义相似的文本检索。
最佳实践
- 批量上传:在插入大量向量时,建议使用批量上传方法以提高效率。
- 过滤条件:在搜索时使用过滤条件可以进一步缩小搜索范围,提高搜索效率。
- 异步操作:对于大规模数据处理,建议使用异步客户端以提高性能。
4. 典型生态项目
Qdrant 客户端可以与其他开源项目结合使用,构建更强大的应用:
- Langchain:一个用于构建语言模型的开源库,可以与 Qdrant 结合实现高效的文本向量搜索。
- Llama Index:一个用于构建知识图谱的开源库,可以与 Qdrant 结合实现高效的实体向量搜索。
- ONNX Runtime:一个用于加速机器学习推理的开源库,可以与 Qdrant 结合实现高效的向量嵌入生成。
通过结合这些生态项目,可以构建出更加复杂和高效的向量搜索应用。