qdrant是一个向量数据库,大多数应用在向量嵌入的相似性搜索上。在大量的向量数据时,匹配的效率非常的高。
qdrant服务器端的安装和运行,非常的简单。qdrant的服务器端是基于docker容器运行的,安装服务器端需要系统中先安装docker。
使用以下命令来拉取容器。
docker pull qdrant/qdrant
下载到本地后,执行以下命令运行qdrant服务
docker run -p 6333:6333 qdrant/qdrant
服务器运行成功
在python中使用qdrant,需要先安装qdrant客户端的包
pip install qdrant_client
与服务器端建立连接
from qdrant_client import QdrantClient
client = QdrantClient(host='localhost', port=6333)
插入向量数据
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance, PointStruct
client = QdrantClient(host='localhost', port=6333)
# 创建向量集合表
client.recreate_collection(
collection_name="i