RapidOCR 使用教程
项目地址:https://gitcode.com/gh_mirrors/ra/RapidOCR
1. 项目目录结构及介绍
RapidOCR 的目录结构通常包括以下几个部分:
- docs:存放项目的文档资料,如 README 文件和 API 文档。
- src:核心代码库,包含主要的功能实现。
model
:模型相关的文件,可能包括预训练模型的存储或加载逻辑。utils
:工具函数,用于处理图像、文本等任务。onnxruntime
:OnnxRuntime 相关的接口封装,用于加速 OCR 推理。
- tests:测试用例和示例代码,帮助验证代码功能并提供使用示例。
- examples:额外的使用案例,展示了如何利用 RapidOCR 进行不同场景的应用。
- requirements.txt:项目依赖的 Python 包列表。
2. 项目启动文件介绍
在 RapidOCR 中,启动文件通常是 src
目录下的一个 Python 脚本或者 Python 模块,例如 main.py
或 run_ocr.py
。这个文件通常包含了以下关键部分:
- 导入所需的包,比如
RapidOCR
类。 - 初始化
RapidOCR
对象,可能需要指定语言或其他参数。 - 加载图像或视频数据。
- 使用
RapidOCR
对象进行文字识别(OCR)。 - 可选地,对结果进行可视化或保存到文件。
- 清理资源,关闭运行时环境。
例如:
from rapidocr_onnxruntime import RapidOCR
# 初始化 OCR 引擎
engine = RapidOCR lang='ch,en'
# 读取图像
img_path = 'tests/test_files/ch_en_num.jpg'
# 执行 OCR
result, elapse = engine(img_path)
# 输出结果
print(result)
print(f"Recognition took {elapse} seconds")
3. 项目的配置文件介绍
RapidOCR 通常不需要特定的配置文件来初始化。然而,你可以通过 RapidOCR
构造器的参数来自定义行为,如指定支持的语言、模型路径或优化设置。例如:
# 支持中文和英文,使用自定义模型路径
engine = RapidOCR(lang=['ch', 'en'], model_path='./custom_models')
如果你需要更复杂的配置,可以创建一个 JSON 文件存储配置,并在程序中加载它。配置文件可能包含以下键值对:
{
"languages": ["ch", "en"],
"model_path": "./custom_models",
"gpu_id": 0,
"use_gpu": true
}
然后在代码中加载:
import json
with open('config.json') as f:
config = json.load(f)
engine = RapidOCR(**config)
这样,你可以根据不同的工作场景轻松切换或共享配置。