Numenta Anomaly Benchmark (NAB) 项目使用教程
项目地址:https://gitcode.com/gh_mirrors/na/NAB
1. 项目的目录结构及介绍
Numenta Anomaly Benchmark (NAB) 项目的目录结构如下:
NAB/
├── config/
│ ├── profiles.json
│ └── thresholds.json
├── data/
│ ├── realAWSCloudwatch/
│ ├── realAdExchange/
│ ├── realKnownCause/
│ ├── realTraffic/
│ ├── realTweets/
│ ├── synthetic/
│ └── syntheticWithAnomaly/
├── detectors/
│ ├── example_detector.py
│ └── htm.py
├── results/
├── scripts/
│ ├── run.py
│ └── score.py
├── tests/
└── README.md
目录介绍
- config/: 包含项目的配置文件。
profiles.json
: 定义不同检测器的配置文件。thresholds.json
: 定义异常检测的阈值。
- data/: 包含各种数据集,用于测试和评估异常检测算法。
realAWSCloudwatch/
: AWS CloudWatch 数据集。realAdExchange/
: 广告交换数据集。realKnownCause/
: 已知原因的数据集。realTraffic/
: 流量数据集。realTweets/
: 推文数据集。synthetic/
: 合成数据集。syntheticWithAnomaly/
: 包含异常的合成数据集。
- detectors/: 包含异常检测器的实现。
example_detector.py
: 示例检测器。htm.py
: HTM (Hierarchical Temporal Memory) 检测器。
- results/: 存储检测结果的目录。
- scripts/: 包含运行和评分脚本。
run.py
: 运行检测器的脚本。score.py
: 评分脚本。
- tests/: 包含测试脚本。
- README.md: 项目说明文档。
2. 项目的启动文件介绍
项目的启动文件是 scripts/run.py
。该文件用于运行异常检测器并生成结果。
启动文件介绍
- scripts/run.py:
- 该脚本负责加载数据、配置检测器并运行检测过程。
- 可以通过命令行参数指定不同的配置和数据集。
3. 项目的配置文件介绍
项目的配置文件位于 config/
目录下。
配置文件介绍
-
config/profiles.json:
- 该文件定义了不同检测器的配置参数。
- 每个配置文件包含检测器的名称、参数和阈值。
-
config/thresholds.json:
- 该文件定义了异常检测的阈值。
- 每个阈值对应一个数据集和检测器。
通过这些配置文件,用户可以自定义检测器的行为和性能。
以上是 Numenta Anomaly Benchmark (NAB) 项目的目录结构、启动文件和配置文件的介绍。希望这份文档能帮助你更好地理解和使用该项目。
NAB The Numenta Anomaly Benchmark 项目地址: https://gitcode.com/gh_mirrors/na/NAB