PM2.5-GNN 项目使用教程

PM2.5-GNN 项目使用教程

PM2.5-GNN PM2.5-GNN: A Domain Knowledge Enhanced Graph Neural Network For PM2.5 Forecasting PM2.5-GNN 项目地址: https://gitcode.com/gh_mirrors/pm/PM2.5-GNN

1. 项目的目录结构及介绍

PM2.5-GNN/
├── data/
│   └── (数据文件)
├── model/
│   └── (模型文件)
├── .gitignore
├── LICENSE
├── PM2.5-GNN presentation SigSPATIAL 2020.pdf
├── README.md
├── config.yaml
├── dataset.py
├── graph.py
├── pm2_5_gnn_sigspatial.pdf
├── requirements.txt
├── train.py
└── util.py

目录结构介绍

  • data/: 存放项目所需的数据文件。
  • model/: 存放训练好的模型文件。
  • .gitignore: Git 忽略文件配置。
  • LICENSE: 项目许可证文件。
  • PM2.5-GNN presentation SigSPATIAL 2020.pdf: 项目在 SIGSPATIAL 2020 上的演示文稿。
  • README.md: 项目说明文件。
  • config.yaml: 项目配置文件。
  • dataset.py: 数据集处理脚本。
  • graph.py: 图神经网络相关脚本。
  • pm2_5_gnn_sigspatial.pdf: 项目论文文件。
  • requirements.txt: 项目依赖库文件。
  • train.py: 模型训练脚本。
  • util.py: 项目工具函数脚本。

2. 项目的启动文件介绍

train.py

train.py 是项目的启动文件,用于训练 PM2.5 预测模型。该脚本会读取配置文件 config.yaml 中的参数,加载数据集,构建图神经网络模型,并进行训练。

使用方法

python train.py

3. 项目的配置文件介绍

config.yaml

config.yaml 是项目的配置文件,包含了模型训练所需的各种参数配置。以下是配置文件的部分内容示例:

# 数据集配置
dataset:
  name: "KnowAir"
  path: "data/KnowAir.csv"

# 模型配置
model:
  hidden_dim: 64
  num_layers: 2

# 训练配置
train:
  epochs: 100
  batch_size: 32
  learning_rate: 0.001

配置文件介绍

  • dataset: 数据集相关配置,包括数据集名称和路径。
  • model: 模型相关配置,包括隐藏层维度、层数等。
  • train: 训练相关配置,包括训练轮数、批量大小、学习率等。

通过修改 config.yaml 文件中的参数,可以调整模型的训练行为和数据处理方式。

PM2.5-GNN PM2.5-GNN: A Domain Knowledge Enhanced Graph Neural Network For PM2.5 Forecasting PM2.5-GNN 项目地址: https://gitcode.com/gh_mirrors/pm/PM2.5-GNN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石顺垒Dora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值