PM2.5-GNN 项目使用教程
1. 项目的目录结构及介绍
PM2.5-GNN/
├── data/
│ └── (数据文件)
├── model/
│ └── (模型文件)
├── .gitignore
├── LICENSE
├── PM2.5-GNN presentation SigSPATIAL 2020.pdf
├── README.md
├── config.yaml
├── dataset.py
├── graph.py
├── pm2_5_gnn_sigspatial.pdf
├── requirements.txt
├── train.py
└── util.py
目录结构介绍
- data/: 存放项目所需的数据文件。
- model/: 存放训练好的模型文件。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- PM2.5-GNN presentation SigSPATIAL 2020.pdf: 项目在 SIGSPATIAL 2020 上的演示文稿。
- README.md: 项目说明文件。
- config.yaml: 项目配置文件。
- dataset.py: 数据集处理脚本。
- graph.py: 图神经网络相关脚本。
- pm2_5_gnn_sigspatial.pdf: 项目论文文件。
- requirements.txt: 项目依赖库文件。
- train.py: 模型训练脚本。
- util.py: 项目工具函数脚本。
2. 项目的启动文件介绍
train.py
train.py
是项目的启动文件,用于训练 PM2.5 预测模型。该脚本会读取配置文件 config.yaml
中的参数,加载数据集,构建图神经网络模型,并进行训练。
使用方法
python train.py
3. 项目的配置文件介绍
config.yaml
config.yaml
是项目的配置文件,包含了模型训练所需的各种参数配置。以下是配置文件的部分内容示例:
# 数据集配置
dataset:
name: "KnowAir"
path: "data/KnowAir.csv"
# 模型配置
model:
hidden_dim: 64
num_layers: 2
# 训练配置
train:
epochs: 100
batch_size: 32
learning_rate: 0.001
配置文件介绍
- dataset: 数据集相关配置,包括数据集名称和路径。
- model: 模型相关配置,包括隐藏层维度、层数等。
- train: 训练相关配置,包括训练轮数、批量大小、学习率等。
通过修改 config.yaml
文件中的参数,可以调整模型的训练行为和数据处理方式。