AIDrug 测测深不可测
码龄6年
关注
提问 私信
  • 博客:156,909
    问答:731
    视频:19,249
    176,889
    总访问量
  • 64
    原创
  • 17,357
    排名
  • 766
    粉丝
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2018-05-18
博客简介:

wufeil7的博客

查看详细资料
  • 原力等级
    领奖
    当前等级
    4
    当前总分
    938
    当月
    17
个人成就
  • 获得642次点赞
  • 内容获得178次评论
  • 获得1,461次收藏
  • 代码片获得5,708次分享
创作历程
  • 20篇
    2024年
  • 10篇
    2023年
  • 11篇
    2022年
  • 11篇
    2021年
  • 13篇
    2020年
  • 1篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • 分子生成
    12篇
  • rdkit
    13篇
  • 药物设计
    50篇
  • 扩散模型
    8篇
  • 图神经网络
    33篇
  • rdkit
    3篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

几何合理的分片段感知的3D分子生成 FragGen - 评测

FragGen 来源于 2024 年 3 月 25 日 预印本的文章,文章题目是 Deep Geometry Handling and Fragment-wise Molecular 3D Graph Generation, 作者是 Odin Zhang,侯廷军,浙江大学药学院。FragGen 是一个基于分子片段的 3D 分子生成模型。这是首个可靠的几何片段式分子生成方法。FragGen 在生成几何的质量和分子的合成可行性方面实现了重大突破,解决了分子生成算法应用中的这两个主要挑战。
原创
发布博客 11 小时前 ·
648 阅读 ·
12 点赞 ·
0 评论 ·
10 收藏

FragGen 生成分子的操作流程解析,完整代码及测评文档

发布资源 前天 07:13 ·
pdf

FragGen_3WZE

发布视频 2024.11.06

FragGen_Opt_4tos

发布视频 2024.11.03

FragGen_Opt_3WZE

发布视频 2024.11.03

FragGen_GNN_4tos

发布视频 2024.11.03

FragGen_GNN_3WZE

发布视频 2024.11.03

FragGen_4toz

发布视频 2024.11.02

药效团去噪条件化的3D分子生成模型 - MolSnapper 评测

MolSnapper 来源于牛津大学统计系的 Charlotte M. Deane 教授为通讯作者的文章:《MolSnapper: Conditioning Diffusion for Structure Based Drug Design》。MolSnapper,一种通过整合专家知识为 SBDD 进行条件化的扩散模型,以 MolDiff 作为基础,在不重新训练 MolDiff 的情况下,对 MolDiff 的生成过程添加药效团、原子位置和类型等限制,以达到生成的分子能符合特定口袋的药效团的目的。接近可用
原创
发布博客 2024.10.27 ·
896 阅读 ·
13 点赞 ·
0 评论 ·
18 收藏

MolSnapper 完整测评文档以及可运行代码

发布资源 2024.10.22 ·
pdf

MolSnapper_3wze

发布视频 2024.10.19

MolSnapper_1h00

发布视频 2024.10.19

几何完备的3D分子生成/优化扩散模型 GCDM-SBDD - 评测

GCDM 来源于美国密苏里大学电气工程与计算机科学系的研究助理 Alex Morehead 为通讯作者的文章:《Geometry-complete diffusion for 3D molecule generation and optimization》。该文章于 2024 年 7 月 3 日发表在 《 communications chemistry 》上。近来,扩散模型和等变图神经网络(GNNs)经常被用于生成三维分子。
原创
发布博客 2024.10.13 ·
1294 阅读 ·
27 点赞 ·
0 评论 ·
23 收藏

GCDM-4oz2

发布视频 2024.10.13

GCDM-3wze

发布视频 2024.10.13

可运行的 GCDM 项目代码 + 完整测评文档

发布资源 2024.10.13 ·
pdf

相互作用的检索增强 3D 分子生成扩散模型 - IRDiff 评测

IRDiff 是一个全新的基于蛋白质-配体相互作用的检索增强 3D 分子扩散模型,可以生成目标感知的分子。IRDiff 利用一组设计好的参考配体分子来引导扩散模型生成满足目标特性的分子。本文对 IRDiff 进行了评测,修正了GitHub上的代码错误,使用内置案例和自有案例对 IRDidd 进行分子生成测试,并检查生成结果。
原创
发布博客 2024.10.01 ·
948 阅读 ·
19 点赞 ·
0 评论 ·
32 收藏

IRDiff 完整评测文档+可运行项目代码

发布资源 2024.09.29 ·
pdf

IRDiff_3wze_outputs

发布视频 2024.09.29

IRDiff_2z3h_outputs

发布视频 2024.09.29
加载更多