- 博客(66)
- 收藏
- 关注
原创 药效团去噪条件化的3D分子生成模型 - MolSnapper 评测
MolSnapper 来源于牛津大学统计系的 Charlotte M. Deane 教授为通讯作者的文章:《MolSnapper: Conditioning Diffusion for Structure Based Drug Design》。MolSnapper,一种通过整合专家知识为 SBDD 进行条件化的扩散模型,以 MolDiff 作为基础,在不重新训练 MolDiff 的情况下,对 MolDiff 的生成过程添加药效团、原子位置和类型等限制,以达到生成的分子能符合特定口袋的药效团的目的。接近可用
2024-10-27 00:05:47 859
原创 几何完备的3D分子生成/优化扩散模型 GCDM-SBDD - 评测
GCDM 来源于美国密苏里大学电气工程与计算机科学系的研究助理 Alex Morehead 为通讯作者的文章:《Geometry-complete diffusion for 3D molecule generation and optimization》。该文章于 2024 年 7 月 3 日发表在 《 communications chemistry 》上。近来,扩散模型和等变图神经网络(GNNs)经常被用于生成三维分子。
2024-10-13 10:05:24 1231
原创 相互作用的检索增强 3D 分子生成扩散模型 - IRDiff 评测
IRDiff 是一个全新的基于蛋白质-配体相互作用的检索增强 3D 分子扩散模型,可以生成目标感知的分子。IRDiff 利用一组设计好的参考配体分子来引导扩散模型生成满足目标特性的分子。本文对 IRDiff 进行了评测,修正了GitHub上的代码错误,使用内置案例和自有案例对 IRDidd 进行分子生成测试,并检查生成结果。
2024-10-01 09:51:47 915
原创 相互作用感知的 3D 分子生成 VAE 模型 - DeepICL 评测
DeepICL 是一种相互作用感知的自回归的基于等变神经网络的3D 分子生成条件 VAE框架,该框架整合了蛋白质-配体相互作用的先验知识。DeepICL 来源于韩国科学技术院化学系和人工智能研究所的 Woo Youn Kim 教授为通讯作者的文章:《3D molecular generative framework for interaction-guided drug design》。该文章于 2024 年 3 月 27 日发表在 《Nature Communications》上。
2024-09-29 07:18:53 1153
原创 物理感知扩散的 3D 分子生成模型 - PIDiff 评测
本文是PIDiff模型的测评,包含文章解读、运行代码、分子生成结果展示等。PIDiff 是一个针对蛋白质口袋特异性的、物理感知扩散的 3D 分子生成模型,通过考虑蛋白质-配体结合的物理化学原理来生成分子,在原理上,生成的分子可以实现蛋白-小分子的自由能最小。
2024-09-16 14:41:47 994
原创 相互作用先验下的 3D 分子生成扩散模型 - IPDiff 评测
IPDiff 是一个基于蛋白质-配体相互作用先验引导的扩散模型,首次把配体-靶标蛋白相互作用引入到扩散模型的扩散和采样过程中,用于蛋白质(口袋)特异性的三维分子生成。我们从 IPDi f f 内置体系以及我们自有的测试体系3wze 分别进行了测评,考察了 IPDiff 生成分子的真实情况。
2024-09-05 20:45:41 1300
原创 分子属性梯度引导的3D分子生成扩散模型 TAGMOL - 评测
TAGMoL 是一个基于分子属性条件引导扩散的3D分子生成模型,适合在给定靶标蛋白质的情况下,可以生成一系列满足目标特性(分子属性,binding affinity)的候选分子。。
2024-08-25 13:21:20 1213
原创 评估生成分子/对接分子的物理合理性工具 PoseBusters 评测
PoseBusters 是一个基于 RDKit 的 Python 包,通过一系列标准检查配体对接姿势的化学有效性和物理合理性。来源于牛津大学统计学系 Martin Buttenschoen、Garrett M. Morris 和 Charlotte M. Deane 合作的文章:《PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences》。。
2024-08-04 22:03:57 1166
原创 SQUID - 形状条件下的基于分子片段的3D分子生成等变模型 评测
基于形状的虚拟筛选在基于配体的药物设计中至关重要,主要目的是识别与已知配体具有相似 3D 形状的分子。传统方法(例如:openeye 的 ROCS)依赖于枚举的化学库,这限制了新化学空间的探索。为此,作者开发了SQUID模型。SQUID 是在 形状条件下 3D 分子生成模型,可以用于在形状条件下的化学空间探索任务。
2024-07-21 15:05:42 1302
原创 药物设计中的SE3等变图神经网络层- EGNN 代码解析
此部分内容介绍了常用在药物设计深度学习中的SE3等变网络层 EGNN。主要对EGNN的代码逻辑、模块进行解析,并介绍其中的SE3等变在模型中的原理。
2024-06-04 23:43:49 1617
原创 3D分子生成的定制扩散框架 MolDiff - 评测
作者提出了对原子和分子键同时进行概率采样的扩散模型MolDiff。MolDiff基于SE3等变神经网络,同时进行原子和化学键的消息传递。
2024-05-12 16:47:20 1821 8
原创 PMDM-针对特定口袋的分子扩散生成模型 评测
PMDM 模型是腾讯AI Lab近期发表在Nature Communication上的分子生成文章。PMDM通过二元等变扩散网络,利用全局和局部分子动力学信息,将目标口袋的 3D 结构感知为条件信息,并结合分子和蛋白质之间的相互作用,学习分子概率。PMDM可以生成结构有效且构效合理的,契合口袋的3D分子。本文以自己的3WZE体系为例子,使用作者开源的代码和checkpoint,对PMDM莫进行测评
2024-04-13 21:04:14 1969 8
原创 口袋条件下的Lead优化几何深度模型-Delete 评测
Delete 模型是浙江大学侯廷军老师发表2023年8月4日在arXiv上的文章,文章名:Delete: Deep Lead Optimization Enveloped in Protein Pocket。Delete 模型基于mask策略,按照作者的描述,首先是随机掩码预训练模型,然后是应用于骨架跃迁、linker设计,片段延伸、侧链修饰的四个微调模型。通过,vina energy等分析,发现 Delete 模型生成的分子可能具有更好的活性。
2024-03-24 20:37:56 1481 2
原创 应用于蛋白-小分子动态对接的等变几何扩散模型-DynamicBind 评测
DynamicBind是上海交通大学郑双佳研究员和星药科技Lu wei等人于2024年2月5日发表在nature communication上的工作,题目为:DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model。本文对Dynamicbind进行了评测,分析了ABL1的底物位点和变构位点的对接结果,以及隐蔽口袋的案例TEM1。
2024-02-20 21:28:14 1968 4
原创 基于片段的3D分子生成扩散模型 - AutoFragDiff 评测
本文是AutoFragDiff模型的测评文章。传统的,基于口袋的3D分子生成网络的常用方法是自回归模式,模型放置原子和原子键是迭代的,逐个进行。但是这种方式会导致误差的积累,同时生成速度较慢,生成苯环分子也需要6个步骤。而使用基于分子片段的自回归方法可以避免这个问题。作者使用使用几何矢量感知器和自回归扩散模型 Autoregressive Diffusion Models (ARDMs),以自回归的模式,分子骨架和蛋白质口袋为条件下,逐个预测新分子片段的原子类型和空间坐标。
2024-02-10 08:57:05 1760
原创 基于motif的分子生成工具 - DrugGPS 测评
DrugGPS( a structure-based Drug design method that is Generalizable with Protein Subpocket prototypes)是针对口袋条件下的,基于motif的3D分子生成网络。其模型结构如下图:DrugGPS是基于他们之前开发的FLAG方法,与FLAG类似,分子生成过程是一个 motif-by-motif的过程,仍然是包含了局部motif选择,下一个motif预测,motif的链接位置预测,motif链接之后的扭转角预测。
2024-02-02 23:24:18 1213
原创 分子生成工具应用案例+流程 - Pocket Crafter
Pocket Crafter 成功构建了一个有效的端到端 3D 生成分子的实际应用的工作流程原型,用于探索新的化学骨架,代表了早期药物发现中识别新型活性化合物的一种有前途的方法。这也是分子生成AI方法新的应用模式。
2024-01-22 21:21:02 1466
原创 知识引导的分子生成扩散模型 - KGDiff 评测
KGDiff模型是一个基于口袋的知识引导的3D分子生成的扩散模型。基于口袋的分子生成模型之前有介绍过targetdiff,FLAG等。其中,KGDiff与TargetDiff类似,KGDiff模型也是一个扩散模型,应针对的是口袋条件下的3D分子生成。KGDiff的创新点在于:KGDiff模型利用领域知识,例如,vina score,指引分子生成过程中的去噪过程,可生成高结合力的分子。此外,KGDiff还是一个原子层级可解释性的模型,在生成分子时,同时给出生成分子预测score,原子层面的score。
2024-01-11 21:06:13 1944
原创 Stable Diffusion架构的3D分子生成模型 GeoLDM - 测评与代码解析
之前,向大家介绍过3D分子生成模型 GeoLDM。GeoLDM按照Stable Diffusion架构,将3D分子生成的扩散过程运行在隐空间内,优化了基于扩散模型的分子生成。可能是打开Drug-AIGC的关键之作。让精确控制分子生成有了希望。因此,我特意测试了一下代码质量。
2024-01-06 11:03:38 2588 5
原创 分子生成工具 - ResGen 评测
ResGen是基于蛋白口袋为条件的三维分子生成的E3等变自回归模型。ResGen建立在并行多尺度建模的原理之上,可以捕获更高层次的口袋分子交互并实现更高的计算效率(比之前最好的模型快大约八倍)。全局自回归和原子自回归。全局自回归在口袋里生成原子,原子自回归是依次产生新添加的原子的坐标和拓扑。与其他分子生成模型相同,ResGen模型同样遵循E3等变特性。模型结构如下图:上图a 在分子生成的过程中,逐步地确认生长点,添加原子(全局自回归),确认原子的位置,然后添加边(原子自回归)。
2023-12-22 22:49:29 2004 15
原创 分子生成领域的stable diffusion - GEOLDM
Drug-AIGC真的要来了。分子生成和分子设计领域有了stable diffusion模型。GEOLDM的全称是Geometric Latent Diffusion Models,几何隐式扩散模型。与stable diffusion 一样,GEOLDM 是分子几何领域的第一个隐式扩散模型(简称:DM),由将结构编码为连续隐式向量的自动编码器和在隐式空间中运行的扩散模型组成。 文章的关键创新在于,对 3D 分子几何进行建模,通过构建具有不变标量和等变张量的点结构隐式空间来捕获其关键的旋转平移等变约束。
2023-12-09 09:57:13 957
原创 分子骨架跃迁工具-DiffHopp 评测
本文是骨架跃迁模型DiffHopp方法的应用案例测评文章。DiffHopp是一个专门针对骨架跃迁任务而训练的E3等变条件扩散模型。此外,DiffHopp使用了更具有几何表达力的图神经网络GVP模型。DiffHopp模型针对给定蛋白质-配体复合物,使用等变扩散模型从以官能团和蛋白质袋为条件的骨架分布中对骨架进行采样。 所得骨架与官能团合并以形成骨架跃迁配体。
2023-11-29 01:30:00 568 2
原创 梯度引导的分子生成扩散模型- GaUDI 评测
GaUDI模型来自于以色列理工Tomer Weiss的2023年发表在预印本ChemRxiv上的工作 《Guided Diffusion for Inverse Molecular Design》。GaUDI是用于逆向分子设计的一个引导扩散模型,将分子生成过程使用性质预测的函数进行梯度引导去噪过程,更新 Zt-1 ,使 Zt-1更靠近我们期待的性质,无需重新训练生成模型,仍可生成特定属性的分子,例如:低 LogP 的分子。
2023-11-21 22:02:39 1050
原创 Schrodinger 分子形状筛选工具Shape Screen 使用方法
schrodinger的shape screen方法是一种基于ligand的筛选方法。需要提供一个参考分子,和需要筛选的分子库。shape screen可以根据原子类型、药效团对分子的形状相似度进行打分。
2023-11-19 11:38:14 396
原创 随机微分方程的分数扩散模型 (score-based diffusion model) 代码示例
score-based diffusion是diffusion模型大火之后,又一个里程碑式的工作,将扩散模型和分数生成模型进行了统一。原始的扩散模型也有缺点,它的采样速度慢,通常需要数千个评估步骤才能抽取一个样本。而 score-based 的扩散模型可以在较短的时间内完成采样。这里提供了score-based diffusion 模型的简单的可运行的代码示例。
2023-11-05 12:33:23 3015 19
原创 基于片段的分子生成网络 (FLAG)使用方法及案例测评
作者提出了一个基于片段的分子生成网络,FLAG (Fragment based LigAnd Generation framework)。在FLAG中,从数据集中提取共同的分子片段,构建了motif的词汇库。在每个生成步骤中,首先采用 3D 图神经网络对中间上下文信息(口袋)进行编码。然后,FLAG模型选择中心motif,预测下一个motif类型,并连接motif。
2023-10-12 23:09:32 829 12
原创 基于SE3等变网络与Diffusion模型的分子生成工具 TargetDiff 评测
TargetDiff是来源于ICLR2023文章:3D Equivariant Diffusion for Target-Aware Molecule Generation and Affinity Prediction。该文章基于 SE(3)-equivariant network,开发了非自回归的,具有旋转和平移不变性的,口袋为条件的分子扩散生成模型TargetDiff。
2023-06-09 08:03:05 1670 10
原创 Diffusion Models 简单代码示例
扩散模型的目标是通过数据在潜在空间(latent space)的扩散过程,学习数据的潜在向量结构(latent structure),通俗点说,扩散模型学习利用数据逐步变成噪声的过程,学习反向的去噪声过程。基于 GAN 生成模型,基于 VAE 的生成模型,以及基于 flow 的生成模型它们都可以生成较高质量的样本,但每种方法都有其局限性。扩散模型的灵感来自于非平衡热力学。他们定义了一个扩散步骤的马尔可夫链,慢慢地向数据添加随机噪声,然后学习反向扩散过程,从噪声中构建所需的数据样本。
2023-04-08 23:20:53 4493 10
原创 分子骨架跃迁工具DiffLinker评测
DiffLinker是一个用于分子骨架跃迁的E3等变3D条件扩散模型。。与之前介绍的Delinker, 3DLinker等不同,DiffLinker可以连接任意的分子片段,而3Dlinker等仅仅可以链接一对(2个)分子片段。同时,DiffLinker也不需要指定链接处和需要添加的原子数量,这些都可以自动生成。此外,可以使用口袋作为条件,进行骨架跃迁任务,并且提供了详细的使用文档。
2023-02-05 15:44:42 1639 4
原创 分子骨架跃迁工具3DLinker 评测
与之前介绍的骨架跃迁工具不同,3DLinker是变分自动编码器模型,可以在分子linker 设计同时生成分子和分子的坐标。文章引入了空间归纳偏差:equivariance E(3) transformations (等方差E3变换)。3DLinker以两个分子片段作为输入,输出中间的Linker部分,在输出分子结构的同时还输出linker的坐标。
2022-10-24 21:48:22 2493 1
原创 分子骨架跃迁工具-DeLinker介绍
DeLinker是一个既可以实现分子骨架跃迁又可以实现分子连接的AI方法。这里对该方法,进行实应用测检验,顺便做了DeLinker在分子骨架跃迁中应用部分的代码分析。
2022-07-24 08:58:39 1957
原创 小分子结合位点/成药位点识别工具-PointSite
现在有很多AI开发的各种方法和工具,可以替代传统的CADD工具。这里介绍的PointSite这个工具可以从原子级别识小分子的结合位点,参考文章来源于Zhen Li的工作,原文链接:PointSite: a point cloud segmentation tool for identification of protein ligand binding atoms (biorxiv.org) PointSite将原始的3D蛋白质结构转译成点云(point clouds), 然后使用基于U
2022-07-07 00:21:13 1527
原创 图神经网络预训练 (5) - 总结
到目前为止,Conetext prediction 和 Attribute Prediction 两种节点和边层面的预训练方法,及其之后的图层面的分子性质监督学习预测,都已经介绍完毕。基本上,Strategies for Pre-training Graph Neural Networks 简介已经结束,并且提供了可以直接运行的代码及其环境。代码见之前文章的链接。现在来总结一下,其中包含的有用的内容:1. 分子由SMILES生成pyg图;2. 分子pyg图组成批次的datal...
2022-05-28 18:26:21 641 4
原创 图神经网络预训练 (4) - 节点属性预测 Attribute Prediction + 监督学习 代码
继续剖析Strategies for Pre-training Graph Neural Networks,介绍另一种节点层面的预训练方法,节点属性预测的预训练方法(Attribute Prediction)及其随后的监督学习用于分子性质预测部分。 可运行版本的代码下载,请见文末。
2022-05-28 17:13:56 4308 6
原创 图神经网络预训练 (3) - Context Prediction + 监督学习 代码
前两篇内容概述了Weihua Hu*, Bowen Liu*图神经网络预训练的方法,以及context prediction进行预训练的实施代码。context prediction 学习的图内的原子/边信息的表征,并没有包括图层面的信息。这一部分的监督学习,是图层次的监督学习,目的是把图层面的信息增加到图的表征向量G(h)中。经过图层次的监督学习,得到的模型就可以直接用于下游的任务。文章方法:在节点层面预训练的模型后加上一个简单的线性模型,用于图层面的监督训练网络结构如下图:..
2022-05-26 12:44:50 2337 3
原创 图神经网络预训练 (2) - 子结构预测 Context Prediction 代码
如上篇文章所提及,Strategies for Pre-training Graph Neural Networks一文的作者提出了节点层面进行预训练的两种方法,分别是:Context 和 Attribute Prediction。这两种预训练方法可以让模型学会节点层面嵌入。将预训练得到的模型用于下游图层面的任务时,可以很好的保留节点层面的信息,活得更好的泛化能力。接下来,这一部分就来具体介绍子结构预测 Context Prediction,并提供一个可以直接运行的代码版本。一、 Conte..
2022-05-23 23:51:29 2076 5
原创 图神经网络预训练(1) - Strategies for Pre-training Graph Neural Networks 简介
我们这次要复制的对象是一篇非常经典的关于图神经网络预训练策略的文章,是斯坦福大学Weihua Hu 课题组的工作,发表于2019年。参考文献Weihua Hu*, Bowen Liu*, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, Jure Leskovec. Strategies for Pre-training Graph Neural Networks. ICLR 2020他们开发了一种自监督的预训练方法,单个节点以及
2022-05-22 13:31:26 1293
原创 Auto-sklearn 安装及用于分子性质预测
简介Auto-sklearn 是一个自动化机器学习工具包,是 scikit-learn 直接替代品,是建立在sklearn进一步封装的基础上。Auto-sklearn不需要用户进行超参数的调节和模型的选择,而是自动进行。这里使用auto-sklearn进行分子的性质预测
2022-04-17 18:15:25 2554
MolSnapper 完整测评文档以及可运行代码
2024-10-22
可运行的 GCDM 项目代码 + 完整测评文档
2024-10-13
IRDiff 完整评测文档+可运行项目代码
2024-09-29
DeepICL 完整测评文档+可运行代码
2024-09-28
PIDiff 的完整文档+可运行项目代码
2024-09-10
IPDiff 相互作用先验下的 3D 分子生成扩散模型 - 完整测评文档.pdf
2024-09-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人