Mayu 框架使用教程

Mayu 框架使用教程

framework Mayu is a live updating server-side component-based VDOM rendering framework written in Ruby framework 项目地址: https://gitcode.com/gh_mirrors/framework40/framework

1. 项目介绍

Mayu 是一个基于 Ruby 的服务器端组件化虚拟 DOM 渲染框架。它支持实时更新,所有渲染都在服务器端完成,客户端只需处理与服务器的连接和 DOM 更新。Mayu 的设计目标是简化开发流程,同时保持高效和灵活性。

核心特性

  • 100% Ruby: 完全使用 Ruby 编写。
  • 100% 服务器端: 所有渲染都在服务器端完成。
  • 100% 异步: 使用 socketry/async 实现非阻塞操作。
  • 组件化: 基于组件的开发模式,类似于 ReactJS。
  • 热重载: 开发环境中支持热重载。
  • 自动资源处理: 自动处理静态资源。
  • 基于文件系统的路由: 受 Next.js 启发。
  • 边缘部署设计: 适用于边缘计算环境。
  • 强大的模板引擎: 使用 Haml 进行模板渲染。

2. 项目快速启动

安装依赖

确保你已经安装了 Ruby 和 Node.js。项目所需的版本在项目根目录的 .tool-versions 文件中指定。此外,还需要安装 ImageMagick 和 libwebp 用于图像处理。

# 安装 Ruby 依赖
bundle install

# 安装 Node.js 依赖
npm install

# 构建浏览器运行时
npm run build

启动示例应用

cd example
bundle install
bin/mayu dev

启动后,打开浏览器访问 https://localhost:9292/

HTTPS 配置

由于 HTTP/2 需要 HTTPS,Mayu 在开发模式下会使用 localhost gem 生成自签名证书。根据你的系统和浏览器,可能需要进行以下配置:

  • MacOS: 将证书添加到钥匙串,并设置为“始终信任”。
  • Chrome: 启用 chrome://flags/#allow-insecure-localhost 设置。
  • Firefox: 添加证书异常。

3. 应用案例和最佳实践

示例应用

Mayu 提供了一个示例应用,展示了如何使用框架构建实时更新的 Web 应用。示例应用部署在 https://mayu.live/,可以作为参考。

最佳实践

  • 组件化开发: 将应用拆分为多个组件,每个组件负责特定的功能。
  • 状态管理: 使用 Mayu 提供的基本状态管理功能,类似于 Redux Toolkit。
  • 异步加载: 通过异步加载内容,提升用户体验。
  • 优化数据传输: 使用 Streams API 优化数据传输,减少延迟。

4. 典型生态项目

相关项目

  • Mayu Starter Kit: 提供了一个快速启动的项目模板,地址为 https://github.com/mayu-live/starter
  • Haml: Mayu 使用的模板引擎,地址为 https://haml.info/
  • socketry/async: 用于实现异步操作的 Ruby 库,地址为 https://github.com/socketry/async

通过这些项目,开发者可以更好地理解和使用 Mayu 框架,构建高效、灵活的 Web 应用。

framework Mayu is a live updating server-side component-based VDOM rendering framework written in Ruby framework 项目地址: https://gitcode.com/gh_mirrors/framework40/framework

### 回答1: 代码如下:% 加载岩性数据 load('rock_data.mat');% 建立神经网络 net = feedforwardnet(15);% 训练神经网络 net = train(net, rock_data);% 对岩性进行识别 result = net(rock_data); ### 回答2: 要编写一个使用神经网络识别岩性的MATLAB代码,您需要以下步骤: 1. 数据收集:首先,您需要收集大量的岩石样本数据,其中包括岩石的不同属性和标签,例如颜色、密度、硬度等。将这些数据组织成适当的输入和输出矩阵。 2. 数据预处理:对收集到的数据进行预处理,包括标准化、归一化和去噪等操作。这将有助于提高神经网络的性能和准确性。 3. 网络设计:选择神经网络的结构和拓扑。在这种情况下,您可以使用多层感知机(MLP),其中包括输入层、隐藏层和输出层。根据您的数据和问题设置适当的节点数和层数。 4. 模型训练:将数据集分为训练集和测试集,用训练集数据来训练神经网络模型。采用反向传播算法,不断调整网络权重和偏差,使之逼近真实输出。通过交叉验证和误差曲线分析确定停止训练的条件。 5. 模型评估:使用测试集数据评估模型的性能。计算准确率、精确度、召回率等指标来评估模型的效果。如果结果不理想,您可以尝试调整网络结构、学习率或采用其他算法来改进性能。 6. 模型应用:将训练完毕的神经网络模型应用于新的岩石样本数据。通过输入待测试的岩石属性,神经网络将给出预测的岩性标签。 在MATLAB中,您可以使用神经网络工具箱来实现上述步骤。该工具箱提供了各种函数和工具,可用于数据处理、网络设计、模型训练和评估。您可以查阅MATLAB官方文档和神经网络工具箱的文档来获得更详细的指导和示例代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

井隆榕Star

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值