回归模型中的残差变异分析 - 基于Swirl课程Regression_Models项目

回归模型中的残差变异分析 - 基于Swirl课程Regression_Models项目

swirl_courses :mortar_board: A collection of interactive courses for the swirl R package. swirl_courses 项目地址: https://gitcode.com/gh_mirrors/sw/swirl_courses

残差变异的基本概念

在回归分析中,残差(residuals)是指观测值与模型预测值之间的差异。它们是评估模型拟合优度的重要指标。残差可以被理解为"移除了预测变量(X)线性关联后的结果(Y)"。

统计建模中,我们需要区分两种变异:

  1. 系统变异(Systematic Variation):由回归模型解释的变异部分
  2. 残差变异(Residual Variation):移除预测变量影响后剩余的变异部分

残差与方差估计

对于一个线性模型,随机误差方差的最大似然估计就是残差的平均平方。但需要注意自由度的问题:

  • 单预测变量的线性模型需要估计两个参数(斜率和截距)
  • 因此计算"平均"平方残差时,分母应使用n-2而非n
  • 使用n作为分母会产生有偏估计

计算公式为:σ² = 1/(n-2) * Σ(残差²)

实践应用:Galton身高数据

让我们通过Galton身高数据集来实践这些概念:

  1. 首先建立回归模型:
fit <- lm(child ~ parent, galton)
  1. 计算残差标准差估计:
sqrt(sum(fit$residuals^2)/(n-2))
  1. 验证结果:
summary(fit)$sigma
  1. 另一种计算方法:
sqrt(deviance(fit)/(n-2))

变异分解

回归分析中一个重要的关系式是:

总变异 = 残差变异 + 回归变异

用数学表达式表示: Σ(Yi - Ȳ)² = Σ(Yi - Ŷi)² + Σ(Ŷi - Ȳ)²

其中:

  • 总变异:Σ(Yi - Ȳ)²(观测值与均值的差异)
  • 残差变异:Σ(Yi - Ŷi)²(观测值与预测值的差异)
  • 回归变异:Σ(Ŷi - Ȳ)²(预测值与均值的差异)

R²统计量

R²表示模型解释的总变异的百分比,计算公式为:

R² = 1 - (残差变异/总变异) = 回归变异/总变异

计算步骤示例:

mu <- mean(galton$child)  # 计算均值
sTot <- sum((galton$child-mu)^2)  # 总变异
sRes <- deviance(fit)  # 残差变异
1 - sRes/sTot  # R²值

有趣的是,R²也等于预测变量和响应变量相关系数的平方:

cor(galton$parent, galton$child)^2

R²的重要特性

  1. 表示模型解释的变异百分比
  2. 取值范围在0到1之间
  3. 等于样本相关系数的平方
  4. 但R²并不能说明全部问题,需要结合其他指标评估模型

总结

通过本课程,我们深入理解了残差变异在回归分析中的重要性,学会了如何计算和解释R²统计量,掌握了变异分解的方法。这些知识对于评估回归模型的质量和解释能力至关重要。

记住,一个好的统计模型不仅要看R²值,还需要综合考虑残差分析、模型假设检验等多个方面,才能对模型效果做出全面评估。

swirl_courses :mortar_board: A collection of interactive courses for the swirl R package. swirl_courses 项目地址: https://gitcode.com/gh_mirrors/sw/swirl_courses

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

内容概要:本文档主要介绍了Intel Edge Peak (EP) 解决方案,涵盖从零到边缘高峰的软件配置和服务管理。EP解决方案旨在简化客户的入门门槛,提供一系列工具和服务,包括Edge Software Provisioner (ESP),用于构建和缓存操作系统镜像和软件栈;Device Management System (DMS),用于远程集群或本地集群管理;以及Autonomous Clustering for the Edge (ACE),用于自动化边缘集群的创建和管理。文档详细描述了从软件发布、设备制造、运输、安装到最终设备激活的全过程,并强调了在不同应用场景(如公共设施、工业厂房、海上油井和移动医院)下的具体部署步骤和技术细节。此外,文档还探讨了安全设备注册(FDO)、集群管理、密钥轮换和备份等关键操作。 适合人群:具备一定IT基础设施和边缘计算基础知识的技术人员,特别是负责边缘设备部署和管理的系统集成商和运维人员。 使用场景及目标:①帮助系统集成商和客户简化边缘设备的初始配置和后续管理;②确保设备在不同网络环境下的安全启动和注册;③支持大规模边缘设备的自动化集群管理和应用程序编排;④提供详细的密钥管理和集群维护指南,确保系统的长期稳定运行。 其他说明:本文档是详细描述了Edge Peak技术及其应用案例。文档不仅提供了技术实现的指导,还涵盖了策略配置、安全性和扩展性的考虑,帮助用户全面理解和实施Intel的边缘计算解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花化贵Ferdinand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值