音乐自动标签化Keras项目教程
1. 项目的目录结构及介绍
music-auto_tagging-keras/
├── data/
│ └── music_tagger_cnn_weights_theano.h5
│ └── music_tagger_cnn_weights_tensorflow.h5
├── music_tagger_cnn.py
├── README.md
└── requirements.txt
- data/: 包含预训练权重的文件夹。
music_tagger_cnn_weights_theano.h5
: Theano后端的预训练权重文件。music_tagger_cnn_weights_tensorflow.h5
: TensorFlow后端的预训练权重文件。
- music_tagger_cnn.py: 项目的主要启动文件,包含MusicTaggerCNN模型的定义。
- README.md: 项目的说明文档。
- requirements.txt: 项目依赖的Python包列表。
2. 项目的启动文件介绍
music_tagger_cnn.py
是项目的主要启动文件,包含了MusicTaggerCNN模型的定义。以下是该文件的关键部分:
from keras import backend as K
from keras.layers import Input, Dense
from keras.models import Model
from keras.layers import Dense, Dropout, Flatten
from keras.layers.convolutional import Convolution2D
from keras.layers.convolutional import MaxPooling2D, ZeroPadding2D
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import ELU
from keras.utils.data_utils import get_file
TH_WEIGHTS_PATH = 'https://github.com/keunwoochoi/music-auto_tagging-keras/blob/master/data/music_tagger_cnn_weights_theano.h5'
TF_WEIGHTS_PATH = 'https://github.com/keunwoochoi/music-auto_tagging-keras/blob/master/data/music_tagger_cnn_weights_tensorflow.h5'
def MusicTaggerCNN(weights='msd', input_tensor=None, include_top=True):
'''Instantiate the MusicTaggerCNN architecture, optionally loading weights pre-trained on Million Song Dataset.
Note that when using TensorFlow, for best performance you should set `image_dim_ordering="tf"` in your Keras config at ~/.keras/keras.json.
'''
# 模型定义部分
# ...
return model
3. 项目的配置文件介绍
项目中没有显式的配置文件,但可以通过修改music_tagger_cnn.py
中的参数来调整模型行为。例如:
weights
: 选择预训练权重,可以是'msd'
(默认)或None
。input_tensor
: 自定义输入张量。include_top
: 是否包含顶层的全连接层。
此外,项目的依赖包在requirements.txt
中列出,可以通过以下命令安装:
pip install -r requirements.txt
以上是音乐自动标签化Keras项目的简要教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!