开源项目 GRF 使用教程
grfGeneralized Random Forests 项目地址:https://gitcode.com/gh_mirrors/gr/grf
1. 项目的目录结构及介绍
GRF(Generalized Random Forests)是一个用于森林基础统计估计和推断的包。以下是项目的目录结构及其介绍:
grf/
├── LICENSE
├── README.md
├── R/
│ ├── causal_forest.R
│ ├── regression_forest.R
│ ├── ...
├── inst/
│ ├── doc/
│ ├── include/
│ ├── ...
├── man/
│ ├── causal_forest.Rd
│ ├── regression_forest.Rd
│ ├── ...
├── src/
│ ├── causal_forest.cpp
│ ├── regression_forest.cpp
│ ├── ...
├── tests/
│ ├── testthat/
│ ├── ...
LICENSE
: 项目许可证文件。README.md
: 项目介绍和使用说明。R/
: 包含R语言的源代码文件。inst/
: 包含文档和其他资源。man/
: 包含R文档文件。src/
: 包含C++源代码文件。tests/
: 包含测试文件。
2. 项目的启动文件介绍
GRF项目的启动文件主要是R语言脚本。以下是一些关键的启动文件:
R/causal_forest.R
: 因果森林的实现。R/regression_forest.R
: 回归森林的实现。
这些文件定义了GRF的核心功能,包括数据处理、模型训练和预测等。
3. 项目的配置文件介绍
GRF项目的配置文件主要是R语言脚本中的参数设置。以下是一些关键的配置文件:
R/init.R
: 初始化配置文件,包含一些全局参数设置。R/params.R
: 参数配置文件,包含模型训练和预测的参数设置。
这些文件定义了GRF的运行参数,包括数据预处理、模型训练的超参数等。
以上是GRF项目的基本使用教程,详细的使用方法和参数设置可以参考项目的官方文档和GitHub页面。
grfGeneralized Random Forests 项目地址:https://gitcode.com/gh_mirrors/gr/grf