开源项目 `arbitrary_style_transfer` 使用教程

开源项目 arbitrary_style_transfer 使用教程

arbitrary_style_transferFast Neural Style Transfer with Arbitrary Style using AdaIN Layer - Based on Huang et al. "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization" 项目地址:https://gitcode.com/gh_mirrors/ar/arbitrary_style_transfer

1. 项目的目录结构及介绍

arbitrary_style_transfer/
├── data/
│   ├── content/
│   ├── style/
│   └── output/
├── models/
│   ├── style_model.py
│   ├── transformer_model.py
│   └── utils.py
├── configs/
│   ├── default_config.yaml
│   └── custom_config.yaml
├── main.py
├── requirements.txt
└── README.md
  • data/: 存储内容图像、风格图像和输出图像的目录。
    • content/: 存放内容图像。
    • style/: 存放风格图像。
    • output/: 存放生成的风格化图像。
  • models/: 包含风格模型和转换模型的实现文件。
    • style_model.py: 定义风格模型的文件。
    • transformer_model.py: 定义转换模型的文件。
    • utils.py: 包含一些辅助函数。
  • configs/: 配置文件目录。
    • default_config.yaml: 默认配置文件。
    • custom_config.yaml: 自定义配置文件。
  • main.py: 项目的启动文件。
  • requirements.txt: 项目依赖的Python包列表。
  • README.md: 项目说明文档。

2. 项目的启动文件介绍

main.py 是项目的启动文件,负责加载配置、初始化模型、读取图像并进行风格转换。以下是 main.py 的主要功能:

import argparse
import yaml
from models.style_model import StyleModel
from models.transformer_model import TransformerModel
from utils import load_image, save_image

def main(config_path):
    # 加载配置文件
    with open(config_path, 'r') as f:
        config = yaml.safe_load(f)
    
    # 初始化模型
    style_model = StyleModel(config['style_model'])
    transformer_model = TransformerModel(config['transformer_model'])
    
    # 加载内容图像和风格图像
    content_image = load_image(config['data']['content_path'])
    style_image = load_image(config['data']['style_path'])
    
    # 进行风格转换
    stylized_image = transformer_model.transfer(content_image, style_image)
    
    # 保存输出图像
    save_image(stylized_image, config['data']['output_path'])

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Arbitrary Style Transfer")
    parser.add_argument("--config", type=str, default="configs/default_config.yaml", help="Path to the config file")
    args = parser.parse_args()
    main(args.config)

3. 项目的配置文件介绍

配置文件使用YAML格式,位于 configs/ 目录下。以下是 default_config.yaml 的内容示例:

data:
  content_path: "data/content/image.jpg"
  style_path: "data/style/style.jpg"
  output_path: "data/output/stylized_image.jpg"

style_model:
  model_path: "models/style_model.pth"
  input_dim: 100

transformer_model:
  model_path: "models/transformer_model.pth"
  style_dim: 100
  content_dim: 256
  • data: 配置图像路径。
    • content_path: 内容图像的路径。
    • style_path: 风格图像的路径。
    • output_path: 输出图像的路径。
  • style_model: 风格模型的配置。
    • model_path: 风格模型的权重文件路径。
    • input_dim: 风格向量的维度。
  • transformer_model: 转换模型的配置。
    • model_path: 转换模型的权重文件路径。
    • style_dim: 风格向量的维度。
    • content_dim: 内容图像的

arbitrary_style_transferFast Neural Style Transfer with Arbitrary Style using AdaIN Layer - Based on Huang et al. "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization" 项目地址:https://gitcode.com/gh_mirrors/ar/arbitrary_style_transfer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

任轶眉Tracy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值